RTO care

What Is the Greenhouse Effect?

By Marc Lallanila | April 12, 2016 03:05pm ET

While other planets in Earth's solar system are either scorching hot or bitterly cold, Earth's surface has relatively mild, stable temperatures. Earth enjoys these temperatures because of its atmosphere, which is the thin layer of gases that cloak and protect the planet. 

However, 97 percent of climate scientists agree that humans have changed Earth's atmosphere in dramatic ways over the past two centuries, resulting in global warming. To understand global warming, it's first necessary to become familiar with the greenhouse effect, though.

Energy in, energy out

There's a delicate balancing act occurring every day all across the Earth, involving the radiation the planet receives from space and the radiation that's reflected back out to space.

Report this Advertisement

Earth is constantly bombarded with enormous amounts of radiation, primarily from the sun. This solar radiation strikes the Earth's atmosphere in the form of visible light, plus ultraviolet (UV), infrared (IR) and other types of radiation that are invisible to the human eye.

UV radiation has a shorter wavelength and a higher energy level than visible light, while IR radiation has a longer wavelength and a weaker energy level. About 30 percent of the radiation striking Earth's atmosphere is immediately reflected back out to space by clouds, ice, snow, sand and other reflective surfaces, according to NASA. The remaining 70 percent of incoming solar radiation is absorbed by the oceans, the land and the atmosphere. As they heat up, the oceans, land and atmosphere release heat in the form of IR thermal radiation, which passes out of the atmosphere and into space.

It's this equilibrium of incoming and outgoing radiation that makes the Earth habitable, with an average temperature of about 59 degrees Fahrenheit (15 degrees Celsius), according to NASA. Without this atmospheric equilibrium, Earth would be as cold and lifeless as its moon, or as blazing hot as Venus. The moon, which has almost no atmosphere, is about minus 243 F (minus 153 C) on its dark side. Venus, on the other hand, has a very dense atmosphere that traps solar radiation; the average temperature on Venus is about 864 F (462 C).

The greenhouse effect

The exchange of incoming and outgoing radiation that warms the Earth is often referred to as the greenhouse effect because a greenhouse works in much the same way.

Incoming UV radiation easily passes through the glass walls of a greenhouse and is absorbed by the plants and hard surfaces inside. Weaker IR radiation, however, has difficulty passing through the glass walls and is trapped inside, thus warming the greenhouse. This effect lets tropical plants thrive inside a greenhouse, even during a cold winter.

A similar phenomenon takes place in a car parked outside on a cold, sunny day. Incoming solar radiation warms the car's interior, but outgoing thermal radiation is trapped inside the car's closed windows.

Greenhouse gases and global warming

"Gas molecules that absorb thermal infrared radiation, and are in significant enough quantity, can force the climate system. These type of gas molecules are called greenhouse gases," Michael Daley, an associate professor of Environmental Science at Lasell College told Live Science. Carbon dioxide (CO2) and other greenhouse gases act like a blanket, absorbing IR radiation and preventing it from escaping into outer space. The net effect is the gradual heating of Earth's atmosphere and surface, a process known as global warming

These greenhouse gases include water vapor, CO2, methane, nitrous oxide (N2O) and other gases, according to the Environmental Protection Agency (EPA). Since the dawn of the Industrial Revolution in the early 1800s, the burning of fossil fuels like coal, oil and gasoline have greatly increased the concentration of greenhouse gases in the atmosphere, especially CO2, National Oceanic and Atmospheric Administration (NOAA). "Deforestation is the second largest anthropogenic source of carbon dioxide to the atmosphere ranging between 6 percent and 17 percent," said Daley. 

Atmospheric CO2 levels have increased by more than 40 percent since the beginning of the Industrial Revolution, from about 280 parts per million (ppm) in the 1800s to 400 ppm today. The last time Earth's atmospheric levels of CO2 reached 400 ppm was during the Pliocene Epoch, between 5 million and 3 million years ago, according to the University of California, San Diego's Scripps Institution of Oceanography.

The greenhouse effect, combined with increasing levels of greenhouse gases and the resulting global warming, is expected to have profound implications, according to the near-universal consensus of scientists.

If global warming continues unchecked, it will cause significant climate change, a rise in sea levels, increasing ocean acidification, extreme weather events and other severe natural and societal impacts, according to NASA, the EPA and other scientific and governmental bodies.

Can the greenhouse effect be reversed?

Many scientists agree that the damage to the Earth's atmosphere and climate is past the point of no return or that the damage is near the point of no return. "I agree that we have passed the point of avoiding climate change," Josef Werne, an associate professor at the department of geology & planetary science at the University of Pittsburgh told Live Science. In Werne's opinion, there are three options from this point forward: 

  1. Do nothing and live with the consequences.
  2. Adapt to the changing climate (which includes things like rising sea level and related flooding).
  3. Mitigate the impact of climate change by aggressively enacting policies that actually reduce the concentration of CO2 in the atmosphere.

Keith Peterman, a professor of chemistry at York College of Pennsylvania, and Gregory Foy, an associate professor of chemistry at York College of Pennsylvania believes that the damage isn't to that point yet, and that international agreements and action can save the planet's atmosphere. 

Additional reporting by Alina Bradford, Live Science Contributor

For the latest information on the greenhouse effect, visit:

Additional resources

Editor's Recommendations

   

출처: <http://www.livescience.com/37743-greenhouse-effect.html>

'지구별 이야기 > 기후와 지구온난화' 카테고리의 다른 글

Jet stream  (0) 2016.10.26
Global Warming  (0) 2016.06.28
Greenhouse gas emission: Cause and Sources  (0) 2016.06.27
지구온난화  (1) 2016.06.27
Global warming  (1) 2016.06.27

CO2 gets stoned:

관련기술2016. 6. 27. 09:09

CO2 Gets Stoned: Method Turns Harmful Gas Into Solid

By Jesse Emspak, Live Science Contributor | June 10, 2016 08:42am ET

   

Researchers have captured carbon dioxide from Iceland's Hellisheidi geothermal power plant and turned it into a solid.

Credit: Kevin Krajick/Lamont-Doherty Earth Observatory

Engineers have taken a tip from Medusa, it seems. They have stared down the pesky greenhouse gas carbon dioxide and turned it to stone.

The process they used was not as easy as simply eyeballing the gas, though. Essentially, they relied on a sped-up version of natural processes to take the carbon dioxide (CO2) spewed from a power plant in Iceland and transform the gas into a solid.

This ability to capture carbon dioxide and store it indefinitely may help curb the levels of heat-trapping gases in the atmosphere and stem global warming, the researchers noted. [Changing Earth: 7 Ideas to Geoengineer Our Planet]

Report this Advertisement

"We need to deal with rising carbon emissions," lead study author Juerg Matter, now an associate professor of geoengineering at the University of Southampton in the United Kingdom, said in a statement. "This is the ultimate permanent storage — turn them back to stone."

Natural carbon storage

Human-caused global warming occurs mostly because of greenhouse gases, such as carbon dioxide and methane, that get poured into the air by humans burning fossil fuels for energy and other processes. These gases trap heat before it can escape out into space. Carbon dioxide is the biggest factor in this warming, scientists have said, because billions of tons of the gas are released every year and it stays in the atmosphere for long periods of time.

Ordinarily, this gas is drawn out of the atmosphere by plants, which use it for photosynthesis, and a chemical process called weathering of rocks. This process happens when carbon dioxide and other gases that dissolve in water form weak acids that then chemically react with minerals in rocks to form other solids, like clays. However, both of those uptake processes are relatively slow, and they can't keep up with human output, the study researchers noted. [The Reality of Climate Change: 10 Myths Busted]

As such, engineers and other scientists have been working on several efforts to somehow inject the carbon dioxide into the ground. For instance, carbon dioxide is pumped into the tiny holes, or pores, in sedimentary rock — the kind laid down by layers of sand, for example, on the ocean floor.

The problem is that the carbon dioxide is a gas, and tends to rise. To keep it underground requires a placing a layer of less porous rock on top of the porous rock where the gas is stored. The carbon dioxide will eventually react with the porous rock and turn into a solid, carbonate compound, but that process can take centuries, if not millennia, according to study co-authorSigurdur Gislason, research professor at the University of Iceland in Reykjavik.

A new way to hide CO2

The team, led by Juerg Matter, now an associate professor of geoengineering at the University of Southampton, tried something different. The researchers took the carbon dioxide emitted by a power plant in Iceland, pressurized it to 25 atmospheres. They then pumped the CO2 into a borehole that was filled with water, dissolving the gas and making something like seltzer water. The mixture was then pumped into a layer of porous, volcanic rock located some 1,640 feet (500 meters) below the surface of the ground. The rock reacted with the mixture and formed carbonate compounds.  

Study co-author Sandra Snaebjornsdottir holds a sample of volcanic rock that is loaded with solidified carbonate, formed when the researchers pumped carbon dioxide into the rock.

Credit: Kevin Krajick/Lamont-Doherty Earth Observatory

Essentially, the researchers sped up the weathering of rocks, Gislason told Live Science. Here's how it works: The carbon dioxide in the water forms carbonic acid, which dissolves the basalts and makes them more porous. Meanwhile, the carbon and oxygen from the CO2 make new compounds, largely magnesium, iron and calcium carbonates, which are solids that can't go anywhere. "Calcium, iron, magnesium can all form carbonates," Gislason said.

The process is very like what happens naturally, except that when stone either as mountains or stone buildings weathers, it happens as it rains, and rainwater only converts a small amount of carbon at a time. In addition, because the CO2 added to the water is under a lot more pressure than it is in the atmosphere, the concentration of carbonic acid is many times higher than in rainwater, or even in the carbonated water that people drink.

The study was conducted over a two-year period, noted study co-author Martin Stute, a research scientist at Columbia University's Lamont-Doherty Earth Observatory in New York. In that time, the team monitored the water as it percolated through the rock using monitoring stations placed some distance from the injection site. They detected no CO2.

Even though the process requires a lot of water initially, that water can be recycled, because the other elements in it the carbon dioxide and the compounds in the rock are all removed in the reactions that form the carbonates, said Stute. He added that another advantage is that the water needn't be fresh; seawater should work just as well, though that hasn't been tried yet.

The next steps will be conducting more experiments and scaling up, the researchers said.

Both Gislason and Stute noted that the carbon dioxide would need to be transported to pumping sites if projects like this were built commercially, so the technique probably lends itself best to power plants that are close to areas with porous basaltic rock. Gislason said that describes many areas with power plants. "There are opportunities for this in Indonesia, or Japan," he said.

Still, the method offers a possible way to get rid of carbon dioxide quickly and cleanly, he said. "In a sense, you just mimic nature," Gislason said. "Just speeding up the process."

The study is detailed in the June 10 issue of the journal Science

Original article on Live Science.

Editor's Recommendations

   

출처: <http://www.livescience.com/55038-method-turns-carbon-dioxide-into-solid.html>

'관련기술' 카테고리의 다른 글

Removal of VOC using nonthermal Plasma  (0) 2016.06.27
Ozone 처리 설비  (0) 2016.06.27
미세먼지의 측정  (0) 2016.06.27
흡착시설  (0) 2016.06.27
세정시설  (0) 2016.06.27

Greenhouse Gas Emissions: Causes & Sources

By Marc Lallanilla | February 10, 2015 07:36pm ET

Behind the struggle to address global warming and climate change lies the increase in greenhouse gases in our atmosphere. A greenhouse gas is any gaseous compound in the atmosphere that is capable of absorbing infrared radiation, thereby trapping and holding heat in the atmosphere. By increasing the heat in the atmosphere, greenhouse gases are responsible for the greenhouse effect, which ultimately leads to global warming.

Solar radiation and the greenhouse effect

Global warming isn't a new study in science. The basics of the phenomenon were worked out by Svante Arrhenius in 1896. His paper, published in the Philosophical Magazine and Journal of Science, was the first to quantify the contribution of carbon dioxide to the greenhouse effect. 

The sun bombards Earth with enormous amounts of radiation, which strike Earth's atmosphere in the form of visible light, plus ultraviolet (UV), infrared (IR) and other types of radiation that are invisible to the human eye.

Report this Advertisement

About 30 percent of the radiation striking the Earth is reflected back out to space by clouds, ice and other reflective surfaces. The remaining 70 percent is absorbed by the oceans, the land and the atmosphere, according to NASA.

As they absorb radiation and heat up, the oceans, land and atmosphere release heat in the form of IR thermal radiation, which passes out of the atmosphere into space. The balance between incoming and outgoing radiation keeps Earth's overall average temperature at about 59 degrees Fahrenheit (15 degrees Celsius), according to NASA.

This exchange of incoming and outgoing radiation that warms Earth is often referred to as the "greenhouse effect" because a greenhouse works in much the same way. Incoming UV radiation easily passes through the glass walls of a greenhouse and is absorbed by the plants and hard surfaces inside. Weaker IR radiation, however, has difficulty passing out through the glass walls and is trapped inside, warming the greenhouse.

How greenhouse gases affect global warming

The gases in the atmosphere that absorb radiation are known as "greenhouse gases" (sometimes abbreviated as GHG) because they are largely responsible for the greenhouse effect. The greenhouse effect, in turn, is one of the leading causes of global warming. The most significant greenhouse gases are water vapor (H2O), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), according to the Environmental Protection Agency (EPA). "While oxygen (O2) is the second most abundant gas in our atmosphere, O2 does not absorb thermal infrared radiation," Michael Daley, an associate professor of environmental science at Lasell College, told Live Science.

While some say that global warming is a natural process and that there have always been greenhouse gasses, the amount of gasses in the atmosphere has skyrocketed in recent history. The Industrial Revolution had a big part to play in the amount of atmospheric CO2 being released. Before, CO2 fluctuated between about 180 ppm during ice ages and 280 ppm during interglacial warm periods. Since the Industrial Revolution, though, the amount of CO2 has dramatically increased to 100 times faster than the increase when the last ice age ended, according to the National Oceanic and Atmospheric Administration (NOAA).

Fluorinated gases that is, gases to which the element fluorine was added — including hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride, are created during industrial processes and are also considered greenhouse gases. Though they are present in very small concentrations, they trap heat very effectively, making them high "global-warming potential" (GWP) gases.

Chlorofluorocarbons (CFCs), once used as refrigerants and aerosol propellants until they were phased out by international agreement, are also greenhouse gases.

Three factors affect the degree to which any greenhouse gas will influence global warming:

  • Its abundance in the atmosphere
  • How long it stays in the atmosphere
  • Its global-warming potential

Carbon dioxide has a significant impact on global warming partly because of its abundance in the atmosphere. According to the EPA, in 2012, U.S. greenhouse gas emissions totaled 6,526 million metric tons of carbon dioxide equivalents, which equaled 82 percent of all human caused greenhouse gasses. Additionally, CO2 stays in the atmosphere for thousands of years.

However, methane is about 21 times more efficient at absorbing radiation than CO2, giving it a high GWP rating, even though it stays in the atmosphere only about 10 years, according to the EPA.

Sources of greenhouse gases

Some greenhouse gases, like methane, are produced through agricultural practices including livestock manure management. Others, like CO2, largely result from natural processes like respiration and from the burning of fossil fuels like coal, oil and gas. The production of electricity is the source of 70 percent of the United States' sulfur dioxide emissions, 13 percent of nitrogen oxide emissions, and 40 percent of carbon dioxide emissions, according to the EPA.

The second cause of CO2 release is deforestation, according to research published by Duke University. When trees are killed to produce goods or heat, they release the carbon that is normally stored for photosynthesis. This process releases nearly a billion tons of carbon into the atmosphere per year, according to the 2010 Global Forest Resources Assessment.

It's worth noting that forestry and other land-use practices offset some of these greenhouse gas emissions, according to the EPA. "Replanting helps to reduce the buildup of carbon dioxide in the atmosphere as growing trees sequester carbon dioxide through photosynthesis. Atmospheric carbon dioxide is converted and stored in the vegetation and soils of the forest. However, forests cannot sequester all of the carbon dioxide we are emitting to the atmosphere through the burning of fossil fuels and a reduction in fossil fuel emissions is still necessary to avoid build up in the atmosphere," said Daley.

Worldwide, the output of greenhouse gases is a source of grave concern: From the time the Industrial Revolution began to the year 2009, atmospheric CO2 levels have increased almost 38 percent and methane levels have increased a whopping 148 percent, according to NASA, and most of that increase has been in the past 50 years. Because of global warming, 2014 was the warmest year on record and 10 of the hottest years have all come after 1998.

"The warming we observe affects atmospheric circulation, which impacts rainfall patterns globally. This will lead to big environmental changes, and challenges, for people all across the globe," Josef Werne, an associate professor in the department of geology and planetary science at the University of Pittsburgh, told Live Science.

If these trends continue, scientists, government officials and a growing number of citizens fear that the worst effects of global warming — extreme weather, rising sea levels, plant and animal extinctions, ocean acidification, major shifts in climate and unprecedented social upheaval — will be inevitable. In answer to the problems caused by global warming by greenhouse gasses, the government created a climate action plan in 2013.

Additional reporting by Alina Bradford, Live Science Contributor

For the latest information on greenhouse gases, visit:

Additional resources

Editor's Recommendations

   

출처: <http://www.livescience.com/37821-greenhouse-gases.html>

'지구별 이야기 > 기후와 지구온난화' 카테고리의 다른 글

Global Warming  (0) 2016.06.28
What is the Greenhouse Effect?  (0) 2016.06.27
지구온난화  (1) 2016.06.27
Global warming  (1) 2016.06.27
Major Greenhouse Gas Reductions Needed by 2050: IPCC  (0) 2016.06.27

지구별은 점점 더워지고 있을까..?

(NASA astronaut photograph ISS022-E-6674.)

과거에 비해서 얼마나 더 더울까 ..?

이 현상이 자연적인 요동의 범주에 있는 것은 아닐까 ..?

얼마나 더 더워 질까 ..?

더워 진다면, 어떤 일들을 초래하게 될 것인가 ..

지난 백년간 한 1도 정도 올라간 기온

지난 백여년 간의 이산화탄소, 메탄 농도의 변화

빙하에 포획된 공기시료

지난 백만년 동안의 기온 변화

지난 천오백년간의 기온 변화, 혹은 기온 이상

지난 백년간에 엘리뇨, 태양 복사에너지, 화산재 등 전지국적인 원인현상과 기온관계

태양 극대기와 극소기간  .. 복사 에너지의 변화를 주는 요인..

지난 30년간의 태양 활동의 변화

지난 삼십년 대기권, 성층권의 온도 변화 등

백년 후 온도 변화 시물레이션 ..

여러가지 시나리오가 있겠지만 ..  대략 2~6도 증가 예상

기온이 올라가면 .. 강수변화, 기온 극한값을 보이는 현상이 많이 나타나겠지..

그래도 화성처럼이나 물이 말라버리는 현상까지는 없겠지.

해수면의 변화 ..

결국은 만조수위가 높아진 다는 얘기 같은데 .. 투발루 같은 상황 까지는 안갈 듯 하고 ..

다음 세기까지 한 60cm 높아진다는 것은  .. 의미있는 변화를 생각 할 수 있을 것 같다.

   

과학자 들의 의견은  .. 결국 과학으로 준비해야 한다는 것이지.

우리 시대 만이 아니고, 우리 아이들의 시대 까지 준비해야 한다는 것이고 ..

   

그림, 사진등

http://earthobservatory.nasa.gov/Features/GlobalWarming/

에서 퍼옴

Global Warming

By Holli RiebeekDesign by Robert SimmonJune 3, 2010

Throughout its long history, Earth has warmed and cooled time and again. Climate has changed when the planet received more or less sunlight due to subtle shifts in its orbit, as the atmosphere or surface changed, or when the Sun's energy varied. But in the past century, another force has started to influence Earth's climate: humanity

Previous versions of this article were published in 2007 and 2002. Archived versions are available as PDF files.

(NASA astronaut photograph ISS022-E-6674.)

What is Global Warming?

Global warming is the unusually rapid increase in Earth's average surface temperature over the past century primarily due to the greenhouse gases released by people burning fossil fuels.

How Does Today's Warming Compare to Past Climate Change?

Earth has experienced climate change in the past without help from humanity. But the current climatic warming is occurring much more rapidly than past warming events.

Why Do Scientists Think Current Warming Isn't Natural?

In Earth's history before the Industrial Revolution, Earth's climate changed due to natural causes unrelated to human activity. These natural causes are still in play today, but their influence is too small or they occur too slowly to explain the rapid warming seen in recent decades.

How Much More Will Earth Warm?

Models predict that as the world consumes ever more fossil fuel, greenhouse gas concentrations will continue to rise, and Earth's average surface temperature will rise with them. Based on plausible emission scenarios, average surface temperatures could rise between 2°C and 6°C by the end of the 21st century. Some of this warming will occur even if future greenhouse gas emissions are reduced, because the Earth system has not yet fully adjusted to environmental changes we have already made.

How Will Earth Respond to Warming Temperatures?

The impact of global warming is far greater than just increasing temperatures. Warming modifies rainfall patterns, amplifies coastal erosion, lengthens the growing season in some regions, melts ice caps and glaciers, and alters the ranges of some infectious diseases. Some of these changes are already occurring.

References and Related Resources

Global Warming

Throughout its long history, Earth has warmed and cooled time and again. Climate has changed when the planet received more or less sunlight due to subtle shifts in its orbit, as the atmosphere or surface changed, or when the Sun's energy varied. But in the past century, another force has started to influence Earth's climate: humanity

How does this warming compare to previous changes in Earth's climate? How can we be certain that human-released greenhouse gases are causing the warming? How much more will the Earth warm? How will Earth respond? Answering these questions is perhaps the most significant scientific challenge of our time.

What is Global Warming?

Global warming is the unusually rapid increase in Earth's average surface temperature over the past century primarily due to the greenhouse gases released as people burn fossil fuels. The global average surface temperature rose 0.6 to 0.9 degrees Celsius (1.1 to 1.6° F) between 1906 and 2005, and the rate of temperature increase has nearly doubled in the last 50 years. Temperatures are certain to go up further.

Despite ups and downs from year to year, global average surface temperature is rising. By the beginning of the 21st century, Earth's temperature was roughly 0.5 degrees Celsius above the long-term (1951–1980) average. (NASA figure adapted from Goddard Institute for Space Studies Surface Temperature Analysis.)

Earth's natural greenhouse effect

Earth's temperature begins with the Sun. Roughly 30 percent of incoming sunlight is reflected back into space by bright surfaces like clouds and ice. Of the remaining 70 percent, most is absorbed by the land and ocean, and the rest is absorbed by the atmosphere. The absorbed solar energy heats our planet.

As the rocks, the air, and the seas warm, they radiate "heat" energy (thermal infrared radiation). From the surface, this energy travels into the atmosphere where much of it is absorbed by water vapor and long-lived greenhouse gases such as carbon dioxide and methane.

When they absorb the energy radiating from Earth's surface, microscopic water or greenhouse gas molecules turn into tiny heaters— like the bricks in a fireplace, they radiate heat even after the fire goes out. They radiate in all directions. The energy that radiates back toward Earth heats both the lower atmosphere and the surface, enhancing the heating they get from direct sunlight.

This absorption and radiation of heat by the atmosphere—the natural greenhouse effect—is beneficial for life on Earth. If there were no greenhouse effect, the Earth's average surface temperature would be a very chilly -18°C (0°F) instead of the comfortable 15°C (59°F) that it is today.

See Climate and Earth's Energy Budget to read more about how sunlight fuels Earth's climate.

The enhanced greenhouse effect

What has scientists concerned now is that over the past 250 years, humans have been artificially raising the concentration of greenhouse gases in the atmosphere at an ever-increasing rate, mostly by burning fossil fuels, but also from cutting down carbon-absorbing forests. Since the Industrial Revolution began in about 1750, carbon dioxide levels have increased nearly 38 percent as of 2009 and methane levels have increased 148 percent.

Increases in concentrations of carbon dioxide (top) and methane (bottom) coincided with the start of the Industrial Revolution in about 1750. Measurements from Antarctic ice cores (green lines) combined with direct atmospheric measurements (blue lines) show the increase of both gases over time. (NASA graphs by Robert Simmon, based on data from the NOAA Paleoclimatology and Earth System Research Laboratory.)

The atmosphere today contains more greenhouse gas molecules, so more of the infrared energy emitted by the surface ends up being absorbed by the atmosphere. Since some of the extra energy from a warmer atmosphere radiates back down to the surface, Earth's surface temperature rises. By increasing the concentration of greenhouse gases, we are making Earth's atmosphere a more efficient greenhouse.

How is Today's Warming Different from the Past?

Earth has experienced climate change in the past without help from humanity. We know about past climates because of evidence left in tree rings, layers of ice in glaciers, ocean sediments, coral reefs, and layers of sedimentary rocks. For example, bubbles of air in glacial ice trap tiny samples of Earth's atmosphere, giving scientists a history of greenhouse gases that stretches back more than 800,000 years. The chemical make-up of the ice provides clues to the average global temperature.

See the Earth Observatory's series Paleoclimatology for details about how scientists study past climates.

   

Glacial ice and air bubbles trapped in it (top) preserve an 800,000-year record of temperature & carbon dioxide. Earth has cycled between ice ages (low points, large negative anomalies) and warm interglacials (peaks). (Photograph courtesy National Snow & Ice Data Center. NASA graph by Robert Simmon, based on data from Jouzel et al., 2007.)

Using this ancient evidence, scientists have built a record of Earth's past climates, or "paleoclimates." The paleoclimate record combined with global models shows past ice ages as well as periods even warmer than today. But the paleoclimate record also reveals that the current climatic warming is occurring much more rapidly than past warming events.

As the Earth moved out of ice ages over the past million years, the global temperature rose a total of 4 to 7 degrees Celsius over about 5,000 years. In the past century alone, the temperature has climbed 0.7 degrees Celsius, roughly ten times faster than the average rate of ice-age-recovery warming.

Temperature histories from paleoclimate data (green line) compared to the history based on modern instruments (blue line) suggest that global temperature is warmer now than it has been in the past 1,000 years, and possibly longer. (Graph adapted from Mann et al., 2008.)

Models predict that Earth will warm between 2 and 6 degrees Celsius in the next century. When global warming has happened at various times in the past two million years, it has taken the planet about 5,000 years to warm 5 degrees. The predicted rate of warming for the next century is at least 20 times faster. This rate of change is extremely unusual.

Is Current Warming Natural?

In Earth's history before the Industrial Revolution, Earth's climate changed due to natural causes not related to human activity. Most often, global climate has changed because of variations in sunlight. Tiny wobbles in Earth's orbit altered when and where sunlight falls on Earth's surface. Variations in the Sun itself have alternately increased and decreased the amount of solar energy reaching Earth. Volcanic eruptions have generated particles that reflect sunlight, brightening the planet and cooling the climate. Volcanic activity has also, in the deep past, increased greenhouse gases over millions of years, contributing to episodes of global warming.

A biographical sketch of Milutin Milankovitch describes how changes in Earth's orbit affects its climate.

These natural causes are still in play today, but their influence is too small or they occur too slowly to explain the rapid warming seen in recent decades. We know this because scientists closely monitor the natural and human activities that influence climate with a fleet of satellites and surface instruments.

Remote meteorological stations (left) and orbiting satellites (right) help scientists monitor the causes and effects of global warming. [Images courtesy NOAA Network for the Detection of Atmospheric Composition Change (left) and Environmental Visualization Laboratory (right).]

NASA satellites record a host of vital signs including atmospheric aerosols (particles from both natural sources and human activities, such as factories, fires, deserts, and erupting volcanoes), atmospheric gases (including greenhouse gases), energy radiated from Earth's surface and the Sun, ocean surface temperature changes, global sea level, the extent of ice sheets, glaciers and sea ice, plant growth, rainfall, cloud structure, and more.

On the ground, many agencies and nations support networks of weather and climate-monitoring stations that maintain temperature, rainfall, and snow depth records, and buoys that measure surface water and deep ocean temperatures. Taken together, these measurements provide an ever-improving record of both natural events and human activity for the past 150 years.

Scientists integrate these measurements into climate models to recreate temperatures recorded over the past 150 years. Climate model simulations that consider only natural solar variability and volcanic aerosols since 1750—omitting observed increases in greenhouse gases—are able to fit the observations of global temperatures only up until about 1950. After that point, the decadal trend in global surface warming cannot be explained without including the contribution of the greenhouse gases added by humans.

Though people have had the largest impact on our climate since 1950, natural changes to Earth's climate have also occurred in recent times. For example, two major volcanic eruptions, El Chichon in 1982 and Pinatubo in 1991, pumped sulfur dioxide gas high into the atmosphere. The gas was converted into tiny particles that lingered for more than a year, reflecting sunlight and shading Earth's surface. Temperatures across the globe dipped for two to three years.

Although Earth's temperature fluctuates naturally, human influence on climate has eclipsed the magnitude of natural temperature changes over the past 120 years. Natural influences on temperature—El Niño, solar variability, and volcanic aerosols—have varied approximately plus and minus 0.2° C (0.4° F), (averaging to about zero), while human influences have contributed roughly 0.8° C (1° F) of warming since 1889. (Graphs adapted from Lean et al., 2008.)

Although volcanoes are active around the world, and continue to emit carbon dioxide as they did in the past, the amount of carbon dioxide they release is extremely small compared to human emissions. On average, volcanoes emit between 130 and 230 million tonnes of carbon dioxide per year. By burning fossil fuels, people release in excess of 100 times more, about 26 billion tonnes of carbon dioxide, into the atmosphere every year (as of 2005). As a result, human activity overshadows any contribution volcanoes may have made to recent global warming.

Changes in the brightness of the Sun can influence the climate from decade to decade, but an increase in solar output falls short as an explanation for recent warming. NASA satellites have been measuring the Sun's output since 1978. The total energy the Sun radiates varies over an 11-year cycle. During solar maxima, solar energy is approximately 0.1 percent higher on average than it is during solar minima.

The transparent halo known as the solar corona changes between solar maximum (left) and solar minimum (right). (NASA Extreme Ultraviolet Telescope images from the SOHO Data Archive.)

Each cycle exhibits subtle differences in intensity and duration. As of early 2010, the solar brightness since 2005 has been slightly lower, not higher, than it was during the previous 11-year minimum in solar activity, which occurred in the late 1990s. This implies that the Sun's impact between 2005 and 2010 might have been to slightly decrease the warming that greenhouse emissions alone would have caused.

Satellite measurements of daily (light line) and monthly average (dark line) total solar irradiance since 1979 have not detected a clear long-term trend. (NASA graph by Robert Simmon, based on data from the ACRIM Science Team.)

Scientists theorize that there may be a multi-decadal trend in solar output, though if one exists, it has not been observed as yet. Even if the Sun were getting brighter, however, the pattern of warming observed on Earth since 1950 does not match the type of warming the Sun alone would cause. When the Sun's energy is at its peak (solar maxima), temperatures in both the lower atmosphere (troposphere) and the upper atmosphere (stratosphere) become warmer. Instead, observations show the pattern expected from greenhouse gas effects: Earth's surface and troposphere have warmed, but the stratosphere has cooled.

Satellite measurements show warming in the troposphere (lower atmosphere, green line) but cooling in the stratosphere (upper atmosphere, red line). This vertical pattern is consistent with global warming due to increasing greenhouse gases, but inconsistent with warming from natural causes. (Graph by Robert Simmon, based on data from Remote Sensing Systems, sponsored by the NOAA Climate and Global Change Program.)

The stratosphere gets warmer during solar maxima because the ozone layer absorbs ultraviolet light; more ultraviolet light during solar maxima means warmer temperatures. Ozone depletion explains the biggest part of the cooling of the stratosphere over recent decades, but it can't account for all of it. Increased concentrations of carbon dioxide in the troposphere and stratosphere together contribute to cooling in the stratosphere.

How Much More Will Earth Warm?

To further explore the causes and effects of global warming and to predict future warming, scientists build climate models—computer simulations of the climate system. Climate models are designed to simulate the responses and interactions of the oceans and atmosphere, and to account for changes to the land surface, both natural and human-induced. They comply with fundamental laws of physics—conservation of energy, mass, and momentum—and account for dozens of factors that influence Earth's climate.

Though the models are complicated, rigorous tests with real-world data hone them into powerful tools that allow scientists to explore our understanding of climate in ways not otherwise possible. By experimenting with the models—removing greenhouse gases emitted by the burning of fossil fuels or changing the intensity of the Sun to see how each influences the climate—scientists use the models to better understand Earth's current climate and to predict future climate.

The models predict that as the world consumes ever more fossil fuel, greenhouse gas concentrations will continue to rise, and Earth's average surface temperature will rise with them. Based on a range of plausible emission scenarios, average surface temperatures could rise between 2°C and 6°C by the end of the 21st century.

Model simulations by the Intergovernmental Panel on Climate Change estimate that Earth will warm between two and six degrees Celsius over the next century, depending on how fast carbon dioxide emissions grow. Scenarios that assume that people will burn more and more fossil fuel provide the estimates in the top end of the temperature range, while scenarios that assume that greenhouse gas emissions will grow slowly give lower temperature predictions. The orange line provides an estimate of global temperatures if greenhouse gases stayed at year 2000 levels. (©2007 IPCC WG1 AR-4.)

Climate Feedbacks

Greenhouse gases are only part of the story when it comes to global warming. Changes to one part of the climate system can cause additional changes to the way the planet absorbs or reflects energy. These secondary changes are called climate feedbacks, and they could more than double the amount of warming caused by carbon dioxide alone. The primary feedbacks are due to snow and ice, water vapor, clouds, and the carbon cycle.

Snow and ice

Perhaps the most well known feedback comes from melting snow and ice in the Northern Hemisphere. Warming temperatures are already melting a growing percentage of Arctic sea ice, exposing dark ocean water during the perpetual sunlight of summer. Snow cover on land is also dwindling in many areas. In the absence of snow and ice, these areas go from having bright, sunlight-reflecting surfaces that cool the planet to having dark, sunlight-absorbing surfaces that bring more energy into the Earth system and cause more warming.

Canada's Athabasca Glacier has been shrinking by about 15 meters per year. In the past 125 years, the glacier has lost half its volume and has retreated more than 1.5 kilometers. As glaciers retreat, sea ice disappears, and snow melts earlier in the spring, the Earth absorbs more sunlight than it would if the reflective snow and ice remained. (Photograph ©2005 Hugh Saxby.)

Water Vapor

The largest feedback is water vapor. Water vapor is a strong greenhouse gas. In fact, because of its abundance in the atmosphere, water vapor causes about two-thirds of greenhouse warming, a key factor in keeping temperatures in the habitable range on Earth. But as temperatures warm, more water vapor evaporates from the surface into the atmosphere, where it can cause temperatures to climb further.

The question that scientists ask is, how much water vapor will be in the atmosphere in a warming world? The atmosphere currently has an average equilibrium or balance between water vapor concentration and temperature. As temperatures warm, the atmosphere becomes capable of containing more water vapor, and so water vapor concentrations go up to regain equilibrium. Will that trend hold as temperatures continue to warm?

The amount of water vapor that enters the atmosphere ultimately determines how much additional warming will occur due to the water vapor feedback. The atmosphere responds quickly to the water vapor feedback. So far, most of the atmosphere has maintained a near constant balance between temperature and water vapor concentration as temperatures have gone up in recent decades. If this trend continues, and many models say that it will, water vapor has the capacity to double the warming caused by carbon dioxide alone.

Clouds

Closely related to the water vapor feedback is the cloud feedback. Clouds cause cooling by reflecting solar energy, but they also cause warming by absorbing infrared energy (like greenhouse gases) from the surface when they are over areas that are warmer than they are. In our current climate, clouds have a cooling effect overall, but that could change in a warmer environment.

Clouds can both cool the planet (by reflecting visible light from the sun) and warm the planet (by absorbing heat radiation emitted by the surface). On balance, clouds slightly cool the Earth. (NASA Astronaut Photograph STS31-E-9552 courtesy Johnson space Center Earth Observations Lab.)

If clouds become brighter, or the geographical extent of bright clouds expands, they will tend to cool Earth's surface. Clouds can become brighter if more moisture converges in a particular region or if more fine particles (aerosols) enter the air. If fewer bright clouds form, it will contribute to warming from the cloud feedback.

See Ship Tracks South of Alaska to learn how aerosols can make clouds brighter.

Clouds, like greenhouse gases, also absorb and re-emit infrared energy. Low, warm clouds emit more energy than high, cold clouds. However, in many parts of the world, energy emitted by low clouds can be absorbed by the abundant water vapor above them. Further, low clouds often have nearly the same temperatures as the Earth's surface, and so emit similar amounts of infrared energy. In a world without low clouds, the amount of emitted infrared energy escaping to space would not be too different from a world with low clouds.

Clouds emit thermal infrared (heat) radiation in proportion to their temperature, which is related to altitude. This image shows the Western Hemisphere in the thermal infrared. Warm ocean and land surface areas are white and light gray; cool, low-level clouds are medium gray; and cold, high-altitude clouds are dark gray and black. (NASA image courtesy GOES Project Science.)

High cold clouds, however, form in a part of the atmosphere where energy-absorbing water vapor is scarce. These clouds trap (absorb) energy coming from the lower atmosphere, and emit little energy to space because of their frigid temperatures. In a world with high clouds, a significant amount of energy that would otherwise escape to space is captured in the atmosphere. As a result, global temperatures are higher than in a world without high clouds.

If warmer temperatures result in a greater amount of high clouds, then less infrared energy will be emitted to space. In other words, more high clouds would enhance the greenhouse effect, reducing the Earth's capability to cool and causing temperatures to warm.

See Clouds and Radiation for a more complete description.

Scientists aren't entirely sure where and to what degree clouds will end up amplifying or moderating warming, but most climate models predict a slight overall positive feedback or amplification of warming due to a reduction in low cloud cover. A recent observational study found that fewer low, dense clouds formed over a region in the Pacific Ocean when temperatures warmed, suggesting a positive cloud feedback in this region as the models predicted. Such direct observational evidence is limited, however, and clouds remain the biggest source of uncertainty--apart from human choices to control greenhouse gases—in predicting how much the climate will change.

The Carbon Cycle

Increased atmospheric carbon dioxide concentrations and warming temperatures are causing changes in the Earth's natural carbon cycle that also can feedback on atmospheric carbon dioxide concentration. For now, primarily ocean water, and to some extent ecosystems on land, are taking up about half of our fossil fuel and biomass burning emissions. This behavior slows global warming by decreasing the rate of atmospheric carbon dioxide increase, but that trend may not continue. Warmer ocean waters will hold less dissolved carbon, leaving more in the atmosphere.

About half the carbon dioxide emitted into the air from burning fossil fuels dissolves in the ocean. This map shows the total amount of human-made carbon dioxide in ocean water from the surface to the sea floor. Blue areas have low amounts, while yellow regions are rich in anthropogenic carbon dioxide. High amounts occur where currents carry the carbon-dioxide-rich surface water into the ocean depths. (Map adapted from Sabine et al., 2004.)

See The Ocean's Carbon Balance on the Earth Observatory.

On land, changes in the carbon cycle are more complicated. Under a warmer climate, soils, especially thawing Arctic tundra, could release trapped carbon dioxide or methane to the atmosphere. Increased fire frequency and insect infestations also release more carbon as trees burn or die and decay.

On the other hand, extra carbon dioxide can stimulate plant growth in some ecosystems, allowing these plants to take additional carbon out of the atmosphere. However, this effect may be reduced when plant growth is limited by water, nitrogen, and temperature. This effect may also diminish as carbon dioxide increases to levels that become saturating for photosynthesis. Because of these complications, it is not clear how much additional carbon dioxide plants can take out of the atmosphere and how long they could continue to do so.

The impact of climate change on the land carbon cycle is extremely complex, but on balance, land carbon sinks will become less efficient as plants reach saturation, where they can no longer take up additional carbon dioxide, and other limitations on growth occur, and as land starts to add more carbon to the atmosphere from warming soil, fires, and insect infestations. This will result in a faster increase in atmospheric carbon dioxide and more rapid global warming. In some climate models, carbon cycle feedbacks from both land and ocean add more than a degree Celsius to global temperatures by 2100.

Emission Scenarios

Scientists predict the range of likely temperature increase by running many possible future scenarios through climate models. Although some of the uncertainty in climate forecasts comes from imperfect knowledge of climate feedbacks, the most significant source of uncertainty in these predictions is that scientists don't know what choices people will make to control greenhouse gas emissions.

The higher estimates are made on the assumption that the entire world will continue using more and more fossil fuel per capita, a scenario scientists call "business-as-usual." More modest estimates come from scenarios in which environmentally friendly technologies such as fuel cells, solar panels, and wind energy replace much of today's fossil fuel combustion.

It takes decades to centuries for Earth to fully react to increases in greenhouse gases. Carbon dioxide, among other greenhouse gases, will remain in the atmosphere long after emissions are reduced, contributing to continuing warming. In addition, as Earth has warmed, much of the excess energy has gone into heating the upper layers of the ocean. Like a hot water bottle on a cold night, the heated ocean will continue warming the lower atmosphere well after greenhouse gases have stopped increasing.

These considerations mean that people won't immediately see the impact of reduced greenhouse gas emissions. Even if greenhouse gas concentrations stabilized today, the planet would continue to warm by about 0.6°C over the next century because of greenhouses gases already in the atmosphere.

See Earth's Big Heat Bucket, Correcting Ocean Cooling, and Climate Q&A: If we immediately stopped emitting greenhouse gases, would global warming stop? to learn more about the ocean heat and global warming.

How Will Global Warming Change Earth?

The impact of increased surface temperatures is significant in itself. But global warming will have additional, far-reaching effects on the planet. Warming modifies rainfall patterns, amplifies coastal erosion, lengthens the growing season in some regions, melts ice caps and glaciers, and alters the ranges of some infectious diseases. Some of these changes are already occurring.

Global warming will shift major climate patterns, possibly prolonging and intensifying the current drought in the U.S. Southwest. The white ring of bleached rock on the once-red cliffs that hold Lake Powell indicate the drop in water level over the past decade—the result of repeated winters with low snowfall. (Photograph ©2006 Tigresblanco.)

Changing Weather

For most places, global warming will result in more frequent hot days and fewer cool days, with the greatest warming occurring over land. Longer, more intense heat waves will become more common. Storms, floods, and droughts will generally be more severe as precipitation patterns change. Hurricanes may increase in intensity due to warmer ocean surface temperatures.

Apart from driving temperatures up, global warming is likely to cause bigger, more destructive storms, leading to an overall increase in precipitation. With some exceptions, the tropics will likely receive less rain (orange) as the planet warms, while the polar regions will receive more precipitation (green). White areas indicate that fewer than two-thirds of the climate models agreed on how precipitation will change. Stippled areas reveal where more than 90 percent of the models agreed. (©2007 IPCC WG1 AR-4.)

It is impossible to pin any single unusual weather event on global warming, but emerging evidence suggests that global warming is already influencing the weather. Heat waves, droughts, and intense rain events have increased in frequency during the last 50 years, and human-induced global warming more likely than not contributed to the trend.

Rising Sea Levels

The weather isn't the only thing global warming will impact: rising sea levels will erode coasts and cause more frequent coastal flooding. Some island nations will disappear. The problem is serious because up to 10 percent of the world's population lives in vulnerable areas less than 10 meters (about 30 feet) above sea level.

Between 1870 and 2000, the sea level increased by 1.7 millimeters per year on average, for a total sea level rise of 221 millimeters (0.7 feet or 8.7 inches). And the rate of sea level rise is accelerating. Since 1993, NASA satellites have shown that sea levels are rising more quickly, about 3 millimeters per year, for a total sea level rise of 48 millimeters (0.16 feet or 1.89 inches) between 1993 and 2009.

Sea levels crept up about 20 centimeters (7.9 inches) during the twentieth century. Sea levels are predicted to go up between 18 and 59 cm (7.1 and 23 inches) over the next century, though the increase could be greater if ice sheets in Greenland and Antarctica melt more quickly than predicted. Higher sea levels will erode coastlines and cause more frequent flooding. (Graph ©2007 Robert Rohde.)

The Intergovernmental Panel on Climate Change (IPCC) estimates that sea levels will rise between 0.18 and 0.59 meters (0.59 to 1.9 feet) by 2099 as warming sea water expands, and mountain and polar glaciers melt. These sea level change predictions may be underestimates, however, because they do not account for any increases in the rate at which the world's major ice sheets are melting. As temperatures rise, ice will melt more quickly. Satellite measurements reveal that the Greenland and West Antarctic ice sheets are shedding about 125 billion tons of ice per year—enough to raise sea levels by 0.35 millimeters (0.01 inches) per year. If the melting accelerates, the increase in sea level could be significantly higher.

Impacting Ecosystems

More importantly, perhaps, global warming is already putting pressure on ecosystems, the plants and animals that co-exist in a particular climate zone, both on land and in the ocean. Warmer temperatures have already shifted the growing season in many parts of the globe. The growing season in parts of the Northern Hemisphere became two weeks longer in the second half of the 20th century. Spring is coming earlier in both hemispheres.

This change in the growing season affects the broader ecosystem. Migrating animals have to start seeking food sources earlier. The shift in seasons may already be causing the lifecycles of pollinators, like bees, to be out of synch with flowering plants and trees. This mismatch can limit the ability of both pollinators and plants to survive and reproduce, which would reduce food availability throughout the food chain.

See Buzzing About Climate Change to read more about how the lifecycle of bees is synched with flowering plants.

Warmer temperatures also extend the growing season. This means that plants need more water to keep growing throughout the season or they will dry out, increasing the risk of failed crops and wildfires. Once the growing season ends, shorter, milder winters fail to kill dormant insects, increasing the risk of large, damaging infestations in subsequent seasons.

In some ecosystems, maximum daily temperatures might climb beyond the tolerance of indigenous plant or animal. To survive the extreme temperatures, both marine and land-based plants and animals have started to migrate towards the poles. Those species, and in some cases, entire ecosystems, that cannot quickly migrate or adapt, face extinction. The IPCC estimates that 20-30 percent of plant and animal species will be at risk of extinction if temperatures climb more than 1.5° to 2.5°C.

Impacting People

The changes to weather and ecosystems will also affect people more directly. Hardest hit will be those living in low-lying coastal areas, and residents of poorer countries who do not have the resources to adapt to changes in temperature extremes and water resources. As tropical temperature zones expand, the reach of some infectious diseases, such as malaria, will change. More intense rains and hurricanes and rising sea levels will lead to more severe flooding and potential loss of property and life.

One inevitable consequence of global warming is sea-level rise. In the face of higher sea levels and more intense storms, coastal communities face greater risk of rapid beach erosion from destructive storms like the intense nor'easter of April 2007 that caused this damage. (Photograph ©2007 metimbers2000.)

Hotter summers and more frequent fires will lead to more cases of heat stroke and deaths, and to higher levels of near-surface ozone and smoke, which would cause more 'code red' air quality days. Intense droughts can lead to an increase in malnutrition. On a longer time scale, fresh water will become scarcer, especially during the summer, as mountain glaciers disappear, particularly in Asia and parts of North America.

On the flip side, there could be "winners" in a few places. For example, as long as the rise in global average temperature stays below 3 degrees Celsius, some models predict that global food production could increase because of the longer growing season at mid- to high-latitudes, provided adequate water resources are available. The same small change in temperature, however, would reduce food production at lower latitudes, where many countries already face food shortages. On balance, most research suggests that the negative impacts of a changing climate far outweigh the positive impacts. Current civilization—agriculture and population distribution—has developed based on the current climate. The more the climate changes, and the more rapidly it changes, the greater the cost of adaptation.

Ultimately, global warming will impact life on Earth in many ways, but the extent of the change is largely up to us. Scientists have shown that human emissions of greenhouse gases are pushing global temperatures up, and many aspects of climate are responding to the warming in the way that scientists predicted they would. This offers hope. Since people are causing global warming, people can mitigate global warming, if they act in time. Greenhouse gases are long-lived, so the planet will continue to warm and changes will continue to happen far into the future, but the degree to which global warming changes life on Earth depends on our decisions now.

CO2

카테고리 없음2016. 6. 27. 08:56

기후변화 감시 - CO₂

1999년부터 2013년까지 마우나로아,

안면도, 고산의 이산화탄소 농도 변화

   

출처: <https://www.climate.go.kr:8005/home/co2_desc.html>

By Andrea Thompson

Emissions of greenhouse gases grew at a faster rate over the decade from 2000 to 2010 than they did over the previous three decades, reaching the highest levels in human history, despite efforts to limit them, according to the last installment of the latest report from the Intergovernmental Panel on Climate Change, released Sunday.

Projections of global mean temperature anomalies over the 21st century relative to 1986–2005 from the combination of the computer models with process-based models, for greenhouse gas concentration scenarios. The assessed likely range is shown as a shaded band. The assessed likely ranges for the mean over the period 2081–2100 for all scenarios are given as coloured vertical bars, with the corresponding median value given as a horizontal line.

Click image to enlarge. Credit: IPCC Working Group I

This final installment, focused on mitigating climate change, says that in order to keep warming under the 2°C (3.6°F) threshold agreed on by the world's governments at a 2009 meeting in Copenhagen, greenhouse gas emissions in 2050 will have to be 40 to 70 percent lower than what they were in 2010. By the end of the century, they will need to be at zero, or could possibly even require taking carbon dioxide out of the atmosphere, a controversial proposition.

The scientists who wrote the report examined about 1,000 scenarios for limiting greenhouse gas emissions through combinations of renewable energy development, increased energy efficiency, technologies that would capture and store carbon underground, and reforestation efforts. How to do this while limiting the impact to economic growth and poverty reduction is a key question, and the efforts necessary would likely differ from region to region, country to country, and state to state, the report said.

But the authors of the report, speaking to reporters in advance of the release, made one thing clear: "The longer we wait, the costlier it will be," said Charles Kolstad, an environmental economist at the University of California, Santa Barbara, and a lead author of the report.

   

Half of all the greenhouse gas emissions from humans were emitted within the past 40 years, growing 2.2 percent per year over the past decade, compared to 0.4 percent per year over the previous three decades. This boost has come from two primary sources: "Emissions are increasing along with economic growth and population," said another study lead author, Robert Stavins, a Harvard economics and policy expert.

Climate change has already caused the planet's average temperature to rise by 1.6°F since the beginning of the 20th century. That temperature rise could reach 2.7°F above pre-industrial levels by the end of the century (and possibly as high as 8.64°F above 1986-2005 levels) if nothing is done to curb emissions, according to the first part of the IPCC's fifth assessment on climate change, as the entire report is called.

"Things are going to have to change if we do want to control climate change," said Leon Clarke, an IPCC author and research economist with the Pacific Northwest National Laboratory. "If we do nothing, temperatures will continue to rise."

Rising temperatures are expected to causes major shifts in ecosystems and precipitation patterns — with some areas becoming more prone to droughts and others to flooding, as well as affecting human health, food security, and potentially taxing infrastructure with stronger storms. The second part of the IPCC report detailed changes like these that are already occurring and warned they would become worse if greenhouse gas emissions aren't brought under control.

Controlling emissions means "de-carbonizing" the global economy, both by reducing the demand for so much energy and by supplying energy that generates far fewer, or no greenhouse gases, the report says. In particular, the use of coal, one of the dirtiest fossil fuels, was a major contributor to the rise in emissions over the past decade with the huge growth of developing countries like China's and India's. Trends like this must be reversed, and if steps aren't taken to remove carbon from the energy equation, greenhouse gas emissions could double or even triple by the middle of the century, the report says.

One way to de-carbonize energy production is through what IPCC author Benoit Lefevre, of the World Resources Institute, describes as "a fundamental shift in global investment from fossil fuel to renewable energy."

The growth of renewables has been stronger than what was anticipated in the last IPCC report, though emissions increases negated any benefit there, said Bill Hare, a climate scientist who is CEO and managing director of Climate Analytics, a non-profit focused on climate research. The IPCC doesn't make specific recommendations on how the switch to renewables should be achieved, though it discusses the direct investment in such technologies, as well as systems like a carbon tax that could push people away from more conventional energy sources.

Another way to pull carbon out of the energy system is to employ carbon capture and storage technology, which to date has been a controversial proposal. CCS, as it is called, has not been implemented on a large scale, and there are questions on whether carbon dioxide sequestered underground, for example, actually stays put over the long term.

CCS could become a key component of mitigation strategies depending on what level of carbon dioxide the world decides to try and stay below and which of the various mitigation pathways examined in the report it takes to get there. The longer we wait to begin reductions and the bigger the reduction it takes, the more likely it is that CCS comes into the picture.

"You can't get to the lower pathways without it," Hare told Climate Central.

The breakdown of total greenhouse gas emissions (converted to carbon dioxide equivalents) from 2010 by economic sector, with indirect emissions from electricity and heat production factored in. (AFOLU stands for Agriculture, Forestry and Other Land Use.)

Click image to enlarge. Credit: IPCC Working Group III

On the demand side of the equation, changing behaviors and building infrastructure that uses energy more efficienctly could lower the amount of energy needed. "Lifestyle and behavioral changes could reduce energy demand by up to 20 percent in the short term and by up to 50 percent of present levels by midcentury," the report says.

Infrastructure like buildings and transportation networks will become particularly important in the coming decades as more and more of the world's population comes to live in cities. As of 2011, 52 percent of the world's population lived in urban areas, and that percentage could increase to 70 percent by 2050 and urban land cover could increase by 50 to 300 percent by 2030.

With so much urban infrastructure to be built in these coming decades we have "a window of opportunity," Lefevre said, to build infrastructure "in a smart way and in a low-carbon way."

Economics and ethics are major considerations in making all of the decisions on how to mitigate global warming. Economics played a bigger role in this report than in previous iterations, in part because much more research has been done and was available for review. "This is really something new and very, very important," Lefevre said, because it increases the relevance of the report to policymakers who will be the ones deciding how investment in renewables are made, for example, and who bears the burden of implementing such changes.

Under the auspices of the United Nations, hundreds of scientists contribute to each part of each IPCC report, which have been released every six to seven year and seek to review the latest research on the state of climate science, its impacts, and the possibilities for adapting to and mitigating climate change. The reviews are meant to benefit policymakers in charge of making decisions on dealing with climate change. Those policymakers are working toward a global, binding agreement on climate change at a 2015 meeting in Paris. "Scientists have done their job now," Lefevre said. "They have outlined the roadmap . . . it's really about having policymakers pick up those roadmaps and adapt them to their countries and implement them."

Not everyone is optimistic that these countries will actually reach agreement.

"There won't be any international agreement," said Steven Cohen, executive director of the Earth Institute at Columbia University, citing the inherent tensions between the interests of developed and developing countries. Cohen, who was not involved with the IPCC report, is still optimistic that humans can solve the issue of climate change and limit warming, but he thinks that economic incentives are what will get the job done.

Scientists involved with the report are also optimistic that humans can take action and prevent the worst effects of climate change.

"You can still do it. We can still hold warming below 2 degrees," Hare said, but he added: "Time is running out."

You May Also Like

Intense Cyclone Ita Bears Down on Australia

U.S. Drought Retreats 15 Percent in One Year

Cheap Solar Power Pushes Renewables Growth Worldwide

U.S. Corn Belt the Most Productive Region in the World?

   

출처: <http://www.climatecentral.org/news/major-greenhouse-gas-reductions-needed-to-curtail-climate-change-ipcc-17300>

   

'지구별 이야기 > 기후와 지구온난화' 카테고리의 다른 글

지구온난화  (1) 2016.06.27
Global warming  (1) 2016.06.27
지구환경과 국제적 조직  (0) 2016.06.27
Global warming  (0) 2016.06.27
지구온난화  (0) 2016.06.27

지구환경과 국제적 조직

   

가. 배경

o 17세기 이래 [오염에는 국경이 없다]는 인식 발전

o 지구를 국가영역으로 분할하여 각 영역내의 모든 문제는 그 영역을 주권적으로 지배하는 국가가 전속적으로 관할하도록 하던 지금까지 국제사회의 기본적인 사고방식만으로는 오늘날의 지구화된 환경문제에 대응할 수 없게 됨 o 따라서 지구환경문제의 해결을 위해서는 국가를 초월한 조직체 즉 국제적 조직이 필요하다는 공감대를 형성, '72년 유엔인간환경회의가 스톡홀름에서 열림

실제로 환경문제를 지구적 규모에서 최초로 논의했던 스톡홀름의 유엔인간환경회의('72)에서도 지구환경문제를 취급할 국제적 조직의 설립이 하나의 중요한 주제로 대두되었으나 당시 회의에 모였던 각국의 대표들은 북구나 북미의 일부 대표들을 제외하고는 환경문제에 대한 이해정도가 달라 결과적으로 동회의에서 채택한 [인간환경선언]에서는 [지구환경의 보전과 향상]에 관한 [공통견해와 원칙]에 대해서만 광범위한 합의가 이루어졌을 뿐 그 구체적 실현방법에 대해서는 종래의 [국가를 통한 실시]가 기본(원칙 24)으로 되고 국제적 조직의 역할은 부차적인 것에 머물고 말았다(원칙 25).

이것은 스톡홀름 회의결과 만들어진 국제적 조직 즉 유엔환경계획(UNEP)이 가드너 교수의 세미나에서 검토된 네 가지 선택 중에서도 비교적 권한이 한정되고 독립성이 약한 유엔총회의 보조기관에 지나지 않고, 또 사무국의 본부가 유엔의 제활동이나 환경문제연구의 중심과는 멀리 떨어진 케냐의 나이로비에 있다는 점등을 보아도 그렇게 중요하게 다뤄지지 못했음을 의미한다.

당시 미국의 대학 등의 세미나에서는 전지구적인 환경문제를 취급하기 위한 국제적조직의 필요성과 어떠한 국제적 조직이 만들어져야 할 것인가에 대하여 활발한 논의가 있었고 그 논의들을 정리하여 콜럼비아 대학의 리챠드 가드너 교수는

o 유엔에 새로운 [환경이사회] 설치

o 새로운 독립 전문기관으로서 [국제환경기관] 설치

o 유엔총회의 보조기관으로서 [유엔환경기관] 설치

o 유엔경제사회이사회의 보조기관으로서 [유엔환경위원회] 설치 등의 안을 보고서의 형태로 스톡홀름 유엔인간환경회의 사무국장에게 제출하여 동회의에서 국제적 제도에 관한 논의를 하기 위한 중요한 배경자료가 됨

o 이와같이 스톡홀름회의에서도 환경문제의 보편성 및 환경문제를 취급하기 위해서는 국제적 조직의 존재와 역할을 무시할 수 없다는 점이 명확하게 인식되었으나 문제는 이를 위하여 세계 각국이 이러한 국제적 조직에 얼마만큼의 권한을 부여해 줄 용의가 있는가 하는 정치적 결단의 수준에서 일치된 합의를 이루지 못했다는 점임

o 이와는 별도로 해양환경이나 개발에 수반되는 환경문제 등 개별적인 전문영역과 관련한 국제적 조직이나 국제적 민간협력조직도 지구환경문제에 관한 중요 역할 수행

   

나. 지구환경문제를 취급하는 국제적 조직의 종류

(1) 국제기구 : 국가간의 조약에 의하여 직접 만들어 진 것

o지구환경문제를 취급하는 세계적 규모의 국제기구 : 유엔, 세계은행, 국제해사기구(IMO), 유엔식량농업기구(FAO) 이들 대부분의 국제적기구들은 유엔과 연휴협정을 체결하고 그 전문기관의 지위를 갖는다.

o 지구환경문제를 취급하는 지역적 국제기구 : 경제협력개발기구(OECD), 국제열대목재기구(ITTO)

(2) 국제기구의 기관 : 독립기구와 같이 취급되지만 유엔의 1기관의 지위를 갖는 기관

o UNEP

o UN 지속적개발위원회(사무국)

(3) 국제행정연합 : 조약에 의하여 만들어진 사무국

예 : '92년 뉴욕에서 체결된 [기후변동에 관한 유엔 프레임뚺 조약]에 의해 설치된 사무국

(4) 민간의 국제적 협력기구(NGO)

o 민간단체, 비정부간국제기구(조직), 비정부단체(조직), 국제민간협력단체, 시민단체, 국제비영리조직(단체) 등

   

다. 지구환경문제를 취급하는 국제기구

지구환경문제를 전문적으로 취급하는 독립된 국제기구는 아직 존재하지 않는다. 그러나 기존의 국제기구 중에서 그 기구의 활동영역과 관련하여 지구환경문제를 취급하는 일이 증가하고 있다.

(1) 국제해사기구(IMO) : IMO의 전신인 정부간해사협의기관(IMCO) 때부터 해양오염 방지를 포함한 해양환경보전 활동에 나서 해양환경보호위원회를 중심으로 관련 국제조약의 기초 및 채택, 해양환경에 관한 연구 및 과학적 기술적 정보교환, 다른 국제기구와의 협력 등을 수행

IMO(IMCO)의 활동 중에서 특히 주목되는 것은 해양오염방지 관련 국제조약의 채택으로 예를 들면 '54년 기름에 의한 해수의 오염방지를 위한 국제조약('62 및 '69 개정), 선박에 의한 오염방지를 위한 국제조약('73) 및 동 조약에 관한 의정서 ('78), 폐기물·기타물질의 투기에 의한 해양오염방지에 관한 조약('72) 등이 있음

(2) 세계은행 : 원래는 전후부흥과 개발원조를 위하여 '44년 국제통화기금(IMF)과 함께 만들어진 국제기구이지만 그 자금 원조로 실시된 각종 개발프로젝트가 자연환경 파괴나 지역주민의 생활환경 악화를 초래한다는 비판을 받았기 때문에 점차로 환경문제를 배려하게되어, '87년에는 은행내부에 부총재를 장으로 하는 환경국을 설치, 세계은행이 지원하는 개발프로젝트가 환경에 미치는 영향을 조사하여 필요한 경우에는 계획의 변경이나 정지를 가능케 하는 시스템을 도입

현재 환경국에는 80명을 넘는 직원이 있고 단순히 세계은행이 융자하는 프로젝 트의 환경에 대한 영향을 심사하는 것 뿐만 아니라 적극적으로 환경을 보전하고 환경질을 향상시키기 위한 프로젝트를 개발, 이에 대한 자금지원도 하고 있다.

세계은행은 그 밖에도 UNDP, UNEP, 지중해환경계획 등과 협력하여 개발이 환경에 미치는 영향문제에 관한 조사연구 등의 지원을 행하고 있다.

(3) 유엔식량농업기구(FAO) : 농업, 임업, 어업분야의 자원보존 및 이들 분야에 있어서의 인간활동(예 : 비료나 살충제 사용)에 의한 환경에의 영향 등을 조사연구

(4) 세계기상기구(WMO) : 세계 기상관측망을 정비, 여러 가지 지구환경 변화를 기상의 관점에서 조사하고 온실효과 기체나 오존층 등 대기환경의 감시 및 연구 활동 수행

(5) 유엔교육과학문화기구(UNESCO) : 환경교육의 추진, 생물권 보호지역의 설정, 세계의 문화유산 및 자연유산의 보호에 관한 조약('72) 채택 등의 활동을 통하여 지구환경문제를 적극적으로 취급

(6) 국제원자력기구(IAEA) : 원자력의 평화적 이용에 따른 환경과 인체의 영향연구, 국제 해양방사능연구소를 통한 해양중의 방사성물질의 발생, 거동 등 연구

그 밖에 '94년 11월에 발효한 유엔해양법 조약은 심해저구역의 자원개발을 관리하기 위한 새로운 국제기구 즉 심해저기구를 설치하기로 하고, 심해저구역의 자원보호 및 해양환경 보전을 위한 규칙과 수속을 채택 (유엔해양법조약 145조),

지역적 국제기구로서는 경제협력개발기구(OECD)환경위원회를 설치하여 환경문제(에너지, 대기관리, 화학물질 관리 등)를 특히 경제나 무역의 관점에서 조사하여 보고하고 있으며,

요코하마에 본부를 두고있는 국제열대목재기구(ITTO)는 열대림의 계획적 이용과 자원 보존, 열대림의 생태학적 균형유지등을 위한 정책장려 활동을 하고 있음

이 밖에도 특정 해양생물자원의 보호와 그들의 지속적 이용을 위한 조사·규제 등을 하기 위한 각종 위원회가 정부간에 설치되어 있다.

예를들면, 국제포경조약에 의해서 만들어진 국제포경위원회('48), 미국, 일본, 캐나다 3국간의 북태평양 공해 어업에 관한 국제조약에 근거하여 설치된 북태평양 어업국제위원회('52), 북서 대서양의 어업에 관한 다수국간의 협력에 관한 조약에 근거하여 설치된 북서대서양어업기관('78), 대서양의 참치류 보존을 위한 국제조약에 근거하여 설치된 대서양참치류보존 국제위원회('66), 남극의 해양생물자원 보존을 위한 조약에 근거하여 설치된 남극해양생물자원보존위원회('80) 등이 있다.

   

라. 지구환경문제를 취급하는 국제기구의 기관

(1) 유엔환경계획(UNEP) : 지구환경문제를 취급하는 국제기구의 기관중 대표적인 것으로 스톡홀름 유엔인간환경회의에서 채택된 인간환경선언 및 환경국제행동계획을 실시하기 위하여 유엔 경제사회이사회(ECOSOC)의 산하기관으로 1972년 설립

UNEP의 목표는 현재의 삶의 질을 개선하기 위해서 환경을 복원시키도록 지도력과 정보를제공하여 국제협력을 조성하는 것이며, 환경적으로 건전한 개발의 개념이 Agenda 21의 행동 프로그램으로써 '92 UNCED에 채택.

UNEP의 가장 중요한 기능들 중 하나인 환경과학과 정보의 조성은 UN체제하에서 환경정보의 광범위한 조사와 분석 등 환경상태보고의 다양성을 초래해왔고, 발생하는 환경문제들에서 세계적으로 광범위한 인식을 창출.

UNEP계획의 초점은

첫째, 자연친화적인 경영과 천연자원의 사용으로 인간행위로부터 해양환경의 보호, 세계생물다양성평가, 멸종위기의 코끼리·코뿔소·호랑이 등 야생동물보호, 줄어드는 삼림을 보호하기 위한 정부간 전문적 지식제공이 있으며

둘째, 훈련·출판·정보교환을 통한 산업화의 자연친화적인 생산과 소비,

셋째, 인간건강과 복지를 위한 더 나은 환경으로 재난구조, 화학적 자료은행, 화학의 안전 관리를 위한 다자간 조직 계획, 넷째, 경제와 환경의 세계화로 환경과 경제, 환경영향평 가, 환경과 천연자원계산, 국제협약지원, 오존층 보호가 있다. 이밖에 UNEP의 환경정보와 평가계획, 세계자원보고서, 환경상태근원보고서, 국제자원정보DB화, 환경과 천연자원네트워 킹이 있다. 환경교육과 인식의 일환으로 Sasakawa환경상을 제정했으며, 국제사진전도 개최함.

UNEP는 스스로 환경문제를 토의하거나 해결책을 입안·집행하는 권한을 갖지 못하고 어디까지나 조정기관으로서의 부차적 역할을 수행하는데 지나지 않으며, 또한 독자적인 기관·권한·직원·예산을 갖는 유엔 여러 기관의 활동을 조정하는 일이 실질적으로 결코 쉬운 일이 아니고, UNEP자체의 권한·예산·사무국직원의 규모 등에서 크게 제한되어 있기 때문에 지구환경분야에서의 UNEP활동은 일반적으로 기대되는 만큼의 성과를 올리지 못하고 있는 실정임

최근에 UNEP가 강조하고 있는 활동분야는 자연자원의 지속가능한 관리와 사용, 지속가능 한 생산과 소비, 인간 건강과 복지를 위한 보다나은 환경조성, 경제와 환경을 동시에 고려, UNEP에 의한 환경정보와 평가계획의 강화 등임

(2) 지속가능한 개발위원회 및 사무국 : '92년 리우데자네이로에서 개최된 환경과 개발에 관한 유엔회의(지구정상회의)의 준비와 이 회의에서 채택된 리우선언과 의제21을 실시하기 위하여 설립된 UNEP와는 별도의 조직으로 이 기구가 조직된 것도 UNEP의 활동이 미흡했기 때문임

유엔에는 그 밖에도 개발에 관련된 환경문제를 취급하는 기관으로서 유엔개발 계획(UNDP), 인간주거에 관련한 환경문제를 취급하는 유엔인간주거센타, 인구 문제와의 관련으로 환경문제를 취급하는 유엔인구기금(UNFPA)등과 같은 기관이 지구환경문제를 취급하는 조직으로서 중요한 역할을 하고 있다.

   

마. 지구환경문제를 취급하는 국제행정연합

최근 채택된 지구환경에 관한 조약 중에는 조약의 실시나 계속적인 국제협력을 확보하기 위한 특별제도를 설치하는 것이 적지 않다. 예를 들면, 오존층 보호를 위한 비엔나조약('85)은 조약의 실시상황을 끊임없이 검토하는 것을 목적으로 체약국회의를 설치하여(제6조) 그 체약국회의의 회합준비 및 그 회합을 위한 역무를 제공할 것과 관계되는 정보의 수집 및 그 자료를 이용한 보고서 작성 등을 위하여 사무국을 설치하고(제7조), 기후변동에 관한 유엔 프레임웍 조약('92)도 같은 목적의 체약국회의 및 사무국을 설치하고 있다.

또 리우의 지구정상회의에서 채택된 생물다양성에 관한 조약에서도 체약국 회의(제23조)와 사무국(제24조)의 설치를 규정하고 있고, 심각한 한발 또는 사막화에 직면해 있는 국가(특히, 아프리카 국가)에 있어서 사막화방지를 위한 유엔조약(사막화방지조약,'94)도 체약국 회의 및 상설사무국 설치를 규정하고 있다.

   

바. 지구환경문제를 취급하는 국제적 시민단체(NGO)

환경NGO는 국가나 정부를 경유하지 않고 직접 환경문제에 관심이 있는 시민을 국제적으로 결집하여 행동하는 성격을 갖기 때문에 환경문제를 각 국가의 정치적·경제적·사회적 국익에 관련시키지 않고 직접 국제문제화 시킬 수 있다는 점에서 국가가 할 수 없는 고유의 역할을 담당하기 때문에 오늘날 지구환경문제를 취급하는 국제적 조직을 생각할 때 환경NGO의 존재를 무시할 수 없다.

비교적 잘 알려진 환경NGO로서는 스위스에 설립된 세계자연보호기금(WWF, '61), 뉴욕에 설립된 환경방위기금(EDF, '67), 런던의 국제환경개발연구소(IIED, '68), 밴쿠버에 본부를 두고 있는 그린피스('70), 미국의 월드워치연구소('74)등이 있다.

이들 환경NGO는 국가의 논리로서는 좀처럼 진전되지 않는 국제사회에 있어서의 지구환경문제의 취급에 대하여 연구, 조사, 여론환기, 교육·개발활동, 국제회의 참가, 가두행동 등을 통하여 일정한 영향력을 행사한다. 예를 들면 앞에 기술한 세계은행의 환경문제에 대한 적극적 활동은 '88년 세계은행 국제통화기금총회에서 환경NGO가 조직한 항의운동이 직접적인 계기가 되었다. 또 환경과 개발에 관한 세계위원회(WWCED)가 종합한 지구의 미래를 지키기 위해서라는 부른트란트 보고서는 리우회의로 이어지는 환경과 개발을 양립시키는 지속가능한 개발이란 사고방식을 낳게된 최초의 문서로 알려져 있다.

   

사. 지구환경문제를 취급하는 국제적 조직의 문제점과 가능성

o 지구환경문제를 취급하는 국제적 조직의 종류와 수는 많으나, 지구환경문제를 전담하는 세계적 국제조직은 아직 없음

o 현재의 환경문제 관련 국제적 조직의 문제점은 권한의 한정, 인적·재정적 자원 부족, 또 다른 주요임무를 갖고 있거나 상위기구의 일부로 지위가 불안정하고 조직이 미흡

그러나 이들의 갖가지 활동이 통합적으로 조정된다면 지구환경문제를 보다 효과적으로 해결할 수 있을 것으로 전망되지만 문제는 이와 같은 조정조직으로서 어떤 것이 적절한가 하는 점이다. 본래는 UNEP가 그러한 조정조직에 해당되는 것이지만 앞에서 본 바와 같이 그 지위, 예산의 한계, 사무국의 소재지 등 본연의 임무에 잘 맞지 않고 여러 가지 장애가 많아 적당한 기구라고 말하기 어렵다.

독립된 국제환경기구의 설치가 한가지 방법이겠지만 미국을 중심으로 새로운 국제기구를 만드는 것에 대해서는 강한 저항이 있고, 실제로 실현되기 어려우며 새로운 국제기구를 만든다해도 기존의 국제기구보다 훨씬 강화된 권한을 기대하기 어렵고 조정기능 역시 매우 제한적일 수밖에 없음

o 이러한 사정을 고려하면 현재 지구환경문제에 관한 국제적 조직의 제활동을 조정하는 가장 적당한 기구는 유엔경제사회 이사회이기 때문에 이를 강화·활성화시키는 것이 당면의 조정문제를 해결하는 방안이 될 수 있을 것임

경제사회이사회는 유엔의 주요기구로서 IMO, 세계은행, UNESCO등의 유엔전문 기관에 대하여도 조정을 위한 권고를 할 수 있는 권한이 있다. 이와같은 지위와 권한을 갖는 경제사회이사회를 활용하는 것이 지구환경문제의 조정을 위한 열쇠가 될 것으로 생각된다.

다만, 경제사회이사회에서도 문제가 없는 것은 아니고 취급하는 사항이 경제개발, 인권, 기술 등 여러 분야에 걸쳐 있고 현재 54개 이사국에 의해서 구성되어 있으며 년 2회 모두 8주간의 심의를 해야하기 때문에 환경문제에 할애되는 시간은 매우 적을 수 밖에 없고, 경제사회이사회의 상시개최, 환경문제를 위한 상설위원회의 설치, 동 위원회의 멤버 축소(30개국정도), 환경문제 담당사무국의 설치 둥이 뒷받침되는 개혁이 필요할 것이다.

o 또한 유엔의 보다 근본적인 개혁이 가능하다면 장기적으로는 경제사회이사회를 경제 개발이사회와 사회환경이사회로 분리, 문제의 집중적 심의가 바람직 함

참고문헌

1. 인터넷자료 : http://www.unep.org, 1999. 8

2. 최덕일 : 국립환경연구원, '95. 12. 아시아 태평양 지역 지구온난화대책 세미나 참석 귀국보고서

3. 橫田 洋三, (1996), 季刊 環境硏究, No.100

4. 淡路 剛久 , (1996), 季刊 環境硏究, No.101

   

작성자 : 대기연구부 부장 최양일(공학석사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-20.htm>

   

'지구별 이야기 > 기후와 지구온난화' 카테고리의 다른 글

Global warming  (1) 2016.06.27
Major Greenhouse Gas Reductions Needed by 2050: IPCC  (0) 2016.06.27
Global warming  (0) 2016.06.27
지구온난화  (0) 2016.06.27
Global warming  (0) 2016.06.27

Global warming

From Wikipedia, the free encyclopedia

Jump to: navigation, search

This article is about the current change in Earth's climate. For general discussion of how the climate can change, see Climate change. For other uses, see Global warming (disambiguation).

Global mean land-ocean temperature change from 1880–2012, relative to the 1951–1980 mean. The black line is the annual mean and the red line is the 5-year running mean. The green bars show uncertainty estimates. Source: NASA GISS.

   

The map shows the 10-year average (2000–2009) global mean temperature anomaly relative to the 1951–1980 mean. The largest temperature increases are in the Arctic and the Antarctic Peninsula. Source: NASA Earth Observatory[1]

Fossil fuel related CO2 emissions compared to five of the IPCC's "SRES" emissions scenarios. The dips are related to global recessions. Image source: Skeptical Science.

Global warming is the rise in the average temperature of Earth's atmosphere and oceans since the late 19th century and its projected continuation. Since the early 20th century, Earth's mean surface temperature has increased by about 0.8 °C (1.4 °F), with about two-thirds of the increase occurring since 1980.[2] Warming of the climate system is unequivocal, and scientists are more than 90% certain that it is primarily caused by increasing concentrations of greenhouse gases produced by human activities such as the burning of fossil fuels and deforestation.[3][4][5][6] These findings are recognized by the national science academies of all major industrialized nations.[7][A]

Climate model projections were summarized in the 2007 Fourth Assessment Report (AR4) by the Intergovernmental Panel on Climate Change (IPCC). They indicated that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C (2 to 5.2 °F) for their lowest emissions scenario and 2.4 to 6.4 °C (4.3 to 11.5 °F) for their highest.[8] The ranges of these estimates arise from the use of models with differing sensitivity to greenhouse gas concentrations.[9][10]

Future warming and related changes will vary from region to region around the globe.[11] The effects of an increase in global temperature include a rise in sea levels and a change in the amount and pattern of precipitation, as well a probable expansion of subtropical deserts.[12] Warming is expected to be strongest in the Arctic and would be associated with the continuing retreat of glaciers, permafrost and sea ice. Other likely effects of the warming include a more frequent occurrence of extreme-weather events including heat waves, droughts and heavy rainfall, ocean acidification and species extinctions due to shifting temperature regimes. Effects significant to humans include the threat to food security from decreasing crop yields and the loss of habitat from inundation.[13][14]

Proposed policy responses to global warming include mitigation by emissions reduction, adaptation to its effects, and possible future geoengineering. Most countries are parties to the United Nations Framework Convention on Climate Change (UNFCCC),[15] whose ultimate objective is to prevent dangerous anthropogenic (i.e., human-induced) climate change.[16] Parties to the UNFCCC have adopted a range of policies designed to reduce greenhouse gas emissions[17]:10[18][19][20]:9 and to assist in adaptation to global warming.[17]:13[20]:10[21][22] Parties to the UNFCCC have agreed that deep cuts in emissions are required,[23] and that future global warming should be limited to below 2.0 °C (3.6 °F) relative to the pre-industrial level.[23][B] Reports published in 2011 by the United Nations Environment Programme[24] and the International Energy Agency[25] suggest that efforts as of the early 21st century to reduce emissions may be inadequate to meet the UNFCCC's 2 °C target.

Contents

[hide]

Observed temperature changes

Main article: Instrumental temperature record

   

The increase in ocean heat content is much larger than any other store of energy in the Earth's heat balance over the two periods 1961 to 2003 and 1993 to 2003, and accounts for more than 90% of the possible increase in heat content of the Earth system during these periods.[26]

   

Two millennia of mean surface temperatures according to different reconstructions from climate proxies, each smoothed on a decadal scale, with the instrumental temperature record overlaid in black.

The Earth's average surface temperature rose by 0.74±0.18 °C over the period 1906–2005. The rate of warming over the last half of that period was almost double that for the period as a whole (0.13±0.03 °C per decade, versus 0.07±0.02 °C per decade). The urban heat island effect is very small, estimated to account for less than 0.002 °C of warming per decade since 1900.[27] Temperatures in the lower troposphere have increased between 0.13 and 0.22 °C (0.22 and 0.4 °F) per decade since 1979, according to satellite temperature measurements. Climate proxies show the temperature to have been relatively stable over the one or two thousand years before 1850, with regionally varying fluctuations such as the Medieval Warm Period and the Little Ice Age.[28]

The warming that is evident in the instrumental temperature record is consistent with a wide range of observations, as documented by many independent scientific groups.[29] Examples include sea level rise (water expands as it warms),[30] widespread melting of snow and ice,[31] increased heat content of the oceans,[29] increased humidity,[29] and the earlier timing of spring events,[32] e.g., the flowering of plants.[33] The probability that these changes could have occurred by chance is virtually zero.[29]

Recent estimates by NASA's Goddard Institute for Space Studies (GISS) and the National Climatic Data Center show that 2005 and 2010 tied for the planet's warmest year since reliable, widespread instrumental measurements became available in the late 19th century, exceeding 1998 by a few hundredths of a degree.[34][35][36] Estimates by the Climatic Research Unit (CRU) show 2005 as the second warmest year, behind 1998 with 2003 and 2010 tied for third warmest year, however, "the error estimate for individual years ... is at least ten times larger than the differences between these three years."[37] The World Meteorological Organization (WMO) statement on the status of the global climate in 2010 explains that, "The 2010 nominal value of +0.53 °C ranks just ahead of those of 2005 (+0.52 °C) and 1998 (+0.51 °C), although the differences between the three years are not statistically significant..."[38]

   

NOAA graph of Global Annual Temperature Anomalies 1950–2012, showing the El Niño-Southern Oscillation

Temperatures in 1998 were unusually warm because global temperatures are affected by the El Niño-Southern Oscillation (ENSO), and the strongest El Niño in the past century occurred during that year.[39] Global temperature is subject to short-term fluctuations that overlay long term trends and can temporarily mask them. The relative stability in temperature from 2002 to 2009 is consistent with such an episode.[40][41] 2010 was also an El Niño year. On the low swing of the oscillation, 2011 as an La Niña year was cooler but it was still the 11th warmest year since records began in 1880. Of the 13 warmest years since 1880, 11 were the years from 2001 to 2011. Over the more recent record, 2011 was the warmest La Niña year in the period from 1950 to 2011, and was close to 1997 which was not at the lowest point of the cycle.[42]

Temperature changes vary over the globe. Since 1979, land temperatures have increased about twice as fast as ocean temperatures (0.25 °C per decade against 0.13 °C per decade).[43] Ocean temperatures increase more slowly than land temperatures because of the larger effective heat capacity of the oceans and because the ocean loses more heat by evaporation.[44] The northern hemisphere warms faster than the southern hemisphere because it has more land and because it has extensive areas of seasonal snow and sea-ice cover subject to ice-albedo feedback. Although more greenhouse gases are emitted in the Northern than Southern Hemisphere this does not contribute to the difference in warming because the major greenhouse gases persist long enough to mix between hemispheres.[45]

The thermal inertia of the oceans and slow responses of other indirect effects mean that climate can take centuries or longer to adjust to changes in forcing. Climate commitment studies indicate that even if greenhouse gases were stabilized at 2000 levels, a further warming of about 0.5 °C (0.9 °F) would still occur.[46]

Initial causes of temperature changes (external forcings)

Main article: Attribution of recent climate change

Greenhouse effect schematic showing energy flows between space, the atmosphere, and earth's surface. Energy exchanges are expressed in watts per square meter (W/m2).

This graph, known as the Keeling Curve, shows the increase of atmospheric carbon dioxide (CO2) concentrations from 1958–2008. Monthly CO2 measurements display seasonal oscillations in an upward trend; each year's maximum occurs during the Northern Hemisphere's late spring, and declines during its growing season as plants remove some atmospheric CO2.

The climate system can respond to changes in external forcings.[47][48] External forcings can "push" the climate in the direction of warming or cooling.[49] Examples of external forcings include changes in atmospheric composition (e.g., increased concentrations of greenhouse gases), solar luminosity, volcanic eruptions, and variations in Earth's orbit around the Sun.[50] Orbital cycles vary slowly over tens of thousands of years and at present are in an overall cooling trend which would be expected to lead towards an ice age, but the 20th century instrumental temperature record shows a sudden rise in global temperatures.[51]

Greenhouse gases

Main articles: Greenhouse gas, Greenhouse effect, Radiative forcing, and Carbon dioxide in Earth's atmosphere

The greenhouse effect is the process by which absorption and emission of infrared radiation by gases in the atmosphere warm a planet's lower atmosphere and surface. It was proposed by Joseph Fourier in 1824 and was first investigated quantitatively by Svante Arrhenius in 1896.[52]

Annual world greenhouse gas emissions, in 2005, by sector.

Bubble diagram showing the share of global cumulative energy-related carbon dioxide emissions for major emitters between 1890-2007.[53]

Naturally occurring amounts of greenhouse gases have a mean warming effect of about 33 °C (59 °F).[54][C] The major greenhouse gases are water vapor, which causes about 36–70% of the greenhouse effect; carbon dioxide (CO2), which causes 9–26%; methane (CH4), which causes 4–9%; and ozone (O3), which causes 3–7%.[55][56][57] Clouds also affect the radiation balance through cloud forcings similar to greenhouse gases.

Human activity since the Industrial Revolution has increased the amount of greenhouse gases in the atmosphere, leading to increased radiative forcing from CO2, methane, tropospheric ozone, CFCs and nitrous oxide. The concentrations of CO2 and methane have increased by 36% and 148% respectively since 1750.[58] These levels are much higher than at any time during the last 800,000 years, the period for which reliable data has been extracted from ice cores.[59][60][61][62] Less direct geological evidence indicates that CO2 values higher than this were last seen about 20 million years ago.[63] Fossil fuel burning has produced about three-quarters of the increase in CO2 from human activity over the past 20 years. The rest of this increase is caused mostly by changes in land-use, particularly deforestation.[64]

Over the last three decades of the 20th century, gross domestic product per capita and population growth were the main drivers of increases in greenhouse gas emissions.[65] CO2 emissions are continuing to rise due to the burning of fossil fuels and land-use change.[66][67]:71 Emissions can be attributed to different regions, e.g., see the figure opposite. Attribution of emissions due to land-use change is a controversial issue.[68][69]:289

Emissions scenarios, estimates of changes in future emission levels of greenhouse gases, have been projected that depend upon uncertain economic, sociological, technological, and natural developments.[70] In most scenarios, emissions continue to rise over the century, while in a few, emissions are reduced.[71][72] Fossil fuel reserves are abundant, and will not limit carbon emissions in the 21st century.[73] Emission scenarios, combined with modelling of the carbon cycle, have been used to produce estimates of how atmospheric concentrations of greenhouse gases might change in the future. Using the six IPCC SRES "marker" scenarios, models suggest that by the year 2100, the atmospheric concentration of CO2 could range between 541 and 970 ppm.[74] This is an increase of 90–250% above the concentration in the year 1750.

The popular media and the public often confuse global warming with ozone depletion, i.e., the destruction of stratospheric ozone by chlorofluorocarbons.[75][76] Although there are a few areas of linkage, the relationship between the two is not strong. Reduced stratospheric ozone has had a slight cooling influence on surface temperatures, while increased tropospheric ozone has had a somewhat larger warming effect.[77]

   

Atmospheric CO2 concentration from 650,000 years ago to near present, using ice core proxy data and direct measurements

Particulates and soot

   

Ship tracks over the Atlantic Ocean on the east coast of the United States. The climatic impacts from particulate forcing could have a large effect on climate through the indirect effect.

Global dimming, a gradual reduction in the amount of global direct irradiance at the Earth's surface, was observed from 1961 until at least 1990.[78] The main cause of this dimming is particulates produced by volcanoes and human made pollutants, which exerts a cooling effect by increasing the reflection of incoming sunlight. The effects of the products of fossil fuel combustion – CO2 and aerosols – have largely offset one another in recent decades, so that net warming has been due to the increase in non-CO2 greenhouse gases such as methane.[79] Radiative forcing due to particulates is temporally limited due to wet deposition which causes them to have an atmospheric lifetime of one week. Carbon dioxide has a lifetime of a century or more, and as such, changes in particulate concentrations will only delay climate changes due to carbon dioxide.[80]

In addition to their direct effect by scattering and absorbing solar radiation, particulates have indirect effects on the radiation budget.[81] Sulfates act as cloud condensation nuclei and thus lead to clouds that have more and smaller cloud droplets. These clouds reflect solar radiation more efficiently than clouds with fewer and larger droplets, known as the Twomey effect.[82] This effect also causes droplets to be of more uniform size, which reduces growth of raindrops and makes the cloud more reflective to incoming sunlight, known as the Albrecht effect.[83] Indirect effects are most noticeable in marine stratiform clouds, and have very little radiative effect on convective clouds. Indirect effects of particulates represent the largest uncertainty in radiative forcing.[84]

Soot may cool or warm the surface, depending on whether it is airborne or deposited. Atmospheric soot directly absorb solar radiation, which heats the atmosphere and cools the surface. In isolated areas with high soot production, such as rural India, as much as 50% of surface warming due to greenhouse gases may be masked by atmospheric brown clouds.[85] When deposited, especially on glaciers or on ice in arctic regions, the lower surface albedo can also directly heat the surface.[86] The influences of particulates, including black carbon, are most pronounced in the tropics and sub-tropics, particularly in Asia, while the effects of greenhouse gases are dominant in the extratropics and southern hemisphere.[87]

   

Satellite observations of Total Solar Irradiance from 1979–2006.

   

Contribution of natural factors and human activities to radiative forcing of climate change.[88] Radiative forcing values are for the year 2005, relative to the pre-industrial era (1750).[88] The contribution of solar irradiance to radiative forcing is 5% the value of the combined radiative forcing due to increases in the atmospheric concentrations of carbon dioxide, methane and nitrous oxide.[89]

Solar activity

Main articles: Solar variation and Solar wind

Since 1978, output from the Sun has been precisely measured by satellites.[90] These measurements indicate that the Sun's output has not increased since 1978, so the warming during the past 30 years cannot be attributed to an increase in solar energy reaching the Earth. In the three decades since 1978, the combination of solar and volcanic activity probably had a slight cooling influence on the climate.[91]

Climate models have been used to examine the role of the sun in recent climate change.[92] Models are unable to reproduce the rapid warming observed in recent decades when they only take into account variations in solar output and volcanic activity. Models are, however, able to simulate the observed 20th century changes in temperature when they include all of the most important external forcings, including human influences and natural forcings.

Another line of evidence against the sun having caused recent climate change comes from looking at how temperatures at different levels in the Earth's atmosphere have changed.[93] Models and observations show that greenhouse warming results in warming of the lower atmosphere (called the troposphere) but cooling of the upper atmosphere (called the stratosphere).[94][95] Depletion of the ozone layer by chemical refrigerants has also resulted in a strong cooling effect in the stratosphere. If the sun was responsible for observed warming, warming of both the troposphere and stratosphere would be expected.[96]

Feedback

Main article: Climate change feedback

   

Sea ice, shown here in Nunavut, in northern Canada, reflects more sunshine, while open ocean absorbs more, accelerating melting.

The climate system includes a range of feedbacks which alter the response of the system to changes in external forcings. Positive feedbacks increase the response of the climate system to an initial forcing, while negative feedbacks reduce the response of the climate system to an initial forcing.[97]

There are a range of feedbacks in the climate system, including water vapor, changes in ice-albedo (snow and ice cover affect how much the Earth's surface absorbs or reflects incoming sunlight), clouds, and changes in the Earth's carbon cycle (e.g., the release of carbon from soil).[98] The main negative feedback is the energy which the Earth's surface radiates into space as infrared radiation.[99] According to the Stefan-Boltzmann law, if temperature doubles, radiated energy increases by a factor of 16 (2 to the 4th power).[100]

Feedbacks are an important factor in determining the sensitivity of the climate system to increased atmospheric greenhouse gas concentrations. Other factors being equal, a higher climate sensitivity means that more warming will occur for a given increase in greenhouse gas forcing.[101] Uncertainty over the effect of feedbacks is a major reason why different climate models project different magnitudes of warming for a given forcing scenario. More research is needed to understand the role of clouds[97] and carbon cycle feedbacks in climate projections.[102]

The IPCC projections given in the lede span the "likely" range (greater than 66% probability, based on expert judgement)[4] for the selected emissions scenarios. However, the IPCC's projections do not reflect the full range of uncertainty.[103] The lower end of the "likely" range appears to be better constrained than the upper end of the "likely" range.[103]

Climate models

Main article: Global climate model

Calculations of global warming prepared in or before 2001 from a range of climate models under the SRES A2 emissions scenario, which assumes no action is taken to reduce emissions and regionally divided economic development.

Projected change in annual mean surface air temperature from the late 20th century to the middle 21st century, based on a medium emissions scenario (SRES A1B).[104] This scenario assumes that no future policies are adopted to limit greenhouse gas emissions. Image credit: NOAA GFDL.[105]

A climate model is a computerized representation of the five components of the climate system: Atmosphere, hydrosphere, cryosphere, land surface, and biosphere.[106] Such models are based on physical principles including fluid dynamics, thermodynamics and radiative transfer. There can be components which represent air movement, temperature, clouds, and other atmospheric properties; ocean temperature, salt content, and circulation; ice cover on land and sea; the transfer of heat and moisture from soil and vegetation to the atmosphere; chemical and biological processes; and others.

Although researchers attempt to include as many processes as possible, simplifications of the actual climate system are inevitable because of the constraints of available computer power and limitations in knowledge of the climate system. Results from models can also vary due to different greenhouse gas inputs and the model's climate sensitivity. For example, the uncertainty in IPCC's 2007 projections is caused by (1) the use of multiple models[103] with differing sensitivity to greenhouse gas concentrations,[107] (2) the use of differing estimates of humanities' future greenhouse gas emissions,[103] (3) any additional emissions from climate feedbacks that were not included in the models IPCC used to prepare its report, i.e., greenhouse gas releases from permafrost.[108]

The models do not assume the climate will warm due to increasing levels of greenhouse gases. Instead the models predict how greenhouse gases will interact with radiative transfer and other physical processes. One of the mathematical results of these complex equations is a prediction whether warming or cooling will occur.[109]

Recent research has called special attention to the need to refine models with respect to the effect of clouds[110] and the carbon cycle.[111][112][113]

Models are also used to help investigate the causes of recent climate change by comparing the observed changes to those that the models project from various natural and human-derived causes. Although these models do not unambiguously attribute the warming that occurred from approximately 1910 to 1945 to either natural variation or human effects, they do indicate that the warming since 1970 is dominated by man-made greenhouse gas emissions.[50]

The physical realism of models is tested by examining their ability to simulate contemporary or past climates.[114]

Climate models produce a good match to observations of global temperature changes over the last century, but do not simulate all aspects of climate.[115] Not all effects of global warming are accurately predicted by the climate models used by the IPCC. Observed Arctic shrinkage has been faster than that predicted.[116] Precipitation increased proportional to atmospheric humidity, and hence significantly faster than global climate models predict.[117][118]

Observed and expected environmental effects

Main article: Effects of global warming

"Detection" is the process of demonstrating that climate has changed in some defined statistical sense, without providing a reason for that change. Detection does not imply attribution of the detected change to a particular cause. "Attribution" of causes of climate change is the process of establishing the most likely causes for the detected change with some defined level of confidence.[119] Detection and attribution may also be applied to observed changes in physical, ecological and social systems.[120]

   

Sparse records indicate that glaciers have been retreating since the early 1800s. In the 1950s measurements began that allow the monitoring of glacial mass balance, reported to the World Glacier Monitoring Service (WGMS) and the National Snow and Ice Data Center (NSIDC)

Natural systems

Main article: Physical impacts of climate change

Global warming has been detected in a number of natural systems. Some of these changes are described in the section on observed temperature changes, e.g., sea level rise and widespread decreases in snow and ice extent.[121] Most of the increase in global average temperature since the mid-20th century is, with high probability,[D] attributable to human-induced changes in greenhouse gas concentrations.[122]

Even with policies to reduce emissions, global emissions are still expected to continue to grow over time.[123]

In the IPCC Fourth Assessment Report, across a range of future emission scenarios, model-based estimates of sea level rise for the 21st century[124] range from 0.18 to 0.59 m. These estimates, however, were not given a likelihood due to a lack of scientific understanding, nor was an upper bound given for sea level rise. On the timescale of centuries to millennia, the melting of ice sheets could result in even higher sea level rise. Partial deglaciation of the Greenland ice sheet, and possibly the West Antarctic Ice Sheet, could contribute 4–6 metres (13 to 20 ft) or more to sea level rise.[125]

Changes in regional climate are expected to include greater warming over land, with most warming at high northern latitudes, and least warming over the Southern Ocean and parts of the North Atlantic Ocean.[123] Snow cover area and sea ice extent are expected to decrease, with the Arctic expected to be largely ice-free in September by 2037.[126]

It is calculated that, with high statistical confidence, certain weather events, such as the heat waves in Texas and the 2003 European heat wave, would not have occurred without global warming. Extremely hot outliers, defined as three standard deviations from climatology records, now cover about 10% of the land surface and, under present trends, would be the norm by 2050. These temperatures are expected to exacerbate the hydrological cycle, with more intense droughts and floods.[127] The effect on hurricane activity is less certain.[128]

Ecological systems

Main article: Climate change and ecosystems

In terrestrial ecosystems, the earlier timing of spring events, and poleward and upward shifts in plant and animal ranges, have been linked with high confidence to recent warming.[121] Future climate change is expected to particularly affect certain ecosystems, including tundra, mangroves, and coral reefs.[123] It is expected that most ecosystems will be affected by higher atmospheric CO2 levels, combined with higher global temperatures.[129] Overall, it is expected that climate change will result in the extinction of many species and reduced diversity of ecosystems.[130]

Dissolved CO2 increases ocean acidity. This process is known as ocean acidification and has been called the "equally evil twin" of global climate change.[131] Increased ocean acidity decreases the amount of carbonate ions, which organisms at the base of the marine food chain, such as foraminifera, use to make structures they need to survive. The current rate of ocean acidification[132] is many times faster than at least the past 300 million years, which included four mass extinctions that involved rising ocean acidity, such as the Permian mass extinction, which killed 95% of marine species. By the end of the century, acidity changes since the industrial revolution would match the Palaeocene-Eocene Thermal Maximum, which occurred over 5000 years and killed 35–50% of benthic foraminifera.[133]

Large-scale and abrupt impacts

Climate change could result in global, large-scale changes in natural and social systems.[134] Two examples are ocean acidification caused by increased atmospheric concentrations of carbon dioxide, and the long-term melting of ice sheets, which contributes to sea level rise.[135]

Some large-scale changes could occur abruptly, i.e., over a short time period, and might also be irreversible. An example of abrupt climate change is the rapid release of methane from permafrost, which would lead to amplified global warming.[136] Scientific understanding of abrupt climate change is generally poor.[137] However, the probability of abrupt changes appears to be very low.[138][136] Factors that may increase the probability of abrupt climate change include higher magnitudes of global warming, warming that occurs more rapidly, and warming that is sustained over longer time periods.[138]

Observed and expected effects on social systems

Further information: Effects of global warming#Social systems and Regional effects of global warming#Regional impacts

Vulnerability of human societies to climate change mainly lies in the effects of extreme-weather events rather than gradual climate change.[139] Impacts of climate change so far include adverse effects on small islands,[140] adverse effects on indigenous populations in high-latitude areas,[141] and small but discernable effects on human health.[142] Over the 21st century, climate change is likely to adversely affect hundreds of millions of people through increased coastal flooding, reductions in water supplies, increased malnutrition and increased health impacts.[143] Most economic studies suggest losses of world gross domestic product (GDP) for this[clarification needed] magnitude of warming.[144][145]

Food security

See also: Climate change and agriculture

Under present trends, by 2030, maize production in Southern Africa could decrease by up to 30% while rice, millet and maize in South Asia could decrease by up to 10%.[146] By 2080, yields in developing countries could decrease by 10% to 25% on average while India could see a drop of 30% to 40%.[147] By 2100, while the population of three billion is expected to double, rice and maize yields in the tropics are expected to decrease by 20–40% because of higher temperatures without accounting for the decrease in yields as a result of soil moisture and water supplies stressed by rising temperatures.[13]

Future warming of around 3 °C (by 2100, relative to 1990–2000) could result in increased crop yields in mid- and high-latitude areas, but in low-latitude areas, yields could decline, increasing the risk of malnutrition.[140] A similar regional pattern of net benefits and costs could occur for economic (market-sector) effects.[142] Warming above 3 °C could result in crop yields falling in temperate regions, leading to a reduction in global food production.[148]

Habitat inundation

Further information: Effects of climate change on humans#Displacement/migration

See also: Climate refugee

In small islands and megadeltas, inundation as a result of sea level rise is expected to threaten vital infrastructure and human settlements.[149][150] This could lead to issues of statelessness for populations in countries such as the Maldives and Tuvalu[151] and homelessness in countries with low lying areas such as Bangladesh.

Responses to global warming

Mitigation

Main article: Climate change mitigation

See also: Fee and dividend

Reducing the amount of future climate change is called mitigation of climate change. The IPCC defines mitigation as activities that reduce greenhouse gas (GHG) emissions, or enhance the capacity of carbon sinks to absorb GHGs from the atmosphere.[152] Many countries, both developing and developed, are aiming to use cleaner, less polluting, technologies.[67]:192[153] Use of these technologies aids mitigation and could result in substantial reductions in CO2 emissions. Policies include targets for emissions reductions, increased use of renewable energy, and increased energy efficiency. Studies indicate substantial potential for future reductions in emissions.[154]

In order to limit warming to within the lower range described in the IPCC's "Summary Report for Policymakers"[155] it will be necessary to adopt policies that will limit greenhouse gas emissions to one of several significantly different scenarios described in the full report.[156] This will become more and more difficult with each year of increasing volumes of emissions and even more drastic measures will be required in later years to stabilize a desired atmospheric concentration of greenhouse gases. Energy-related carbon-dioxide (CO2) emissions in 2010 were the highest in history, breaking the prior record set in 2008.[157]

Since even in the most optimistic scenario, fossil fuels are going to be used for years to come, mitigation may also involve carbon capture and storage, a process that traps CO2 produced by factories and gas or coal power stations and then stores it, usually underground.[158]

Adaptation

Main article: Adaptation to global warming

Other policy responses include adaptation to climate change. Adaptation to climate change may be planned, either in reaction to or anticipation of climate change, or spontaneous, i.e., without government intervention.[159] Planned adaptation is already occurring on a limited basis.[154] The barriers, limits, and costs of future adaptation are not fully understood.[154]

A concept related to adaptation is "adaptive capacity," which is the ability of a system (human, natural or managed) to adjust to climate change (including climate variability and extremes) to moderate potential damages, to take advantage of opportunities, or to cope with consequences.[160] Unmitigated climate change (i.e., future climate change without efforts to limit greenhouse gas emissions) would, in the long term, be likely to exceed the capacity of natural, managed and human systems to adapt.[161]

Geoengineering

Main article: Geoengineering

Geoengineering, the deliberate modification of the climate, has been investigated as a possible response to global warming, e.g. by NASA[162] and the Royal Society.[163] Techniques under research fall generally into the categories solar radiation management and carbon dioxide removal, although various other schemes have been suggested. Research is at a generally early stage, with no large-scale schemes currently deployed.

Views on global warming

See also: Scientific opinion on climate change

There are different views over what the appropriate policy response to climate change should be.[164] These competing views weigh the benefits of limiting emissions of greenhouse gases against the costs. In general, it seems likely that climate change will impose greater damages and risks in poorer regions.[165]

Global warming controversy

Main article: Global warming controversy

The global warming controversy refers to a variety of disputes, significantly more pronounced in the popular media than in the scientific literature,[166][167] regarding the nature, causes, and consequences of global warming. The disputed issues include the causes of increased global average air temperature, especially since the mid-20th century, whether this warming trend is unprecedented or within normal climatic variations, whether humankind has contributed significantly to it, and whether the increase is wholly or partially an artifact of poor measurements. Additional disputes concern estimates of climate sensitivity, predictions of additional warming, and what the consequences of global warming will be.[citation needed]

In the scientific literature, there is a strong consensus that global surface temperatures have increased in recent decades and that the trend is caused mainly by human-induced emissions of greenhouse gases. No scientific body of national or international standing disagrees with this view,[168][169] though a few organisations hold non-committal positions.[citation needed]

From 1990–1997 in the United States, conservative think tanks mobilized to undermine the legitimacy of global warming as a social problem. They challenged the scientific evidence; argued that global warming will have benefits; and asserted that proposed solutions would do more harm than good.[170]

Politics

Main article: Politics of global warming

   

Article 2 of the UN Framework Convention refers explicitly to "stabilization of greenhouse gas concentrations."[171] In order to stabilize the atmospheric concentration of CO2, emissions worldwide would need to be dramatically reduced from their present level.[172]

Most countries are Parties to the United Nations Framework Convention on Climate Change (UNFCCC).[173] The ultimate objective of the Convention is to prevent dangerous human interference of the climate system.[174] As is stated in the Convention, this requires that GHG concentrations are stabilized in the atmosphere at a level where ecosystems can adapt naturally to climate change, food production is not threatened, and economic development can proceed in a sustainable fashion.[175] The Framework Convention was agreed in 1992, but since then, global emissions have risen.[176] During negotiations, the G77 (a lobbying group in the United Nations representing 133 developing nations)[177]:4 pushed for a mandate requiring developed countries to "[take] the lead" in reducing their emissions.[178] This was justified on the basis that: the developed world's emissions had contributed most to the stock of GHGs in the atmosphere; per-capita emissions (i.e., emissions per head of population) were still relatively low in developing countries; and the emissions of developing countries would grow to meet their development needs.[69]:290 This mandate was sustained in the Kyoto Protocol to the Framework Convention,[69]:290 which entered into legal effect in 2005.[179]

In ratifying the Kyoto Protocol, most developed countries accepted legally binding commitments to limit their emissions. These first-round commitments expire in 2012.[179] US President George W. Bush rejected the treaty on the basis that "it exempts 80% of the world, including major population centers such as China and India, from compliance, and would cause serious harm to the US economy."[177]:5

At the 15th UNFCCC Conference of the Parties, held in 2009 at Copenhagen, several UNFCCC Parties produced the Copenhagen Accord.[180] Parties associated with the Accord (140 countries, as of November 2010)[181]:9 aim to limit the future increase in global mean temperature to below 2 °C.[182] A preliminary assessment published in November 2010 by the United Nations Environment Programme (UNEP) suggests a possible "emissions gap" between the voluntary pledges made in the Accord and the emissions cuts necessary to have a "likely" (greater than 66% probability) chance of meeting the 2 °C objective.[181]:10–14 The UNEP assessment takes the 2 °C objective as being measured against the pre-industrial global mean temperature level. To having a likely chance of meeting the 2 °C objective, assessed studies generally indicated the need for global emissions to peak before 2020, with substantial declines in emissions thereafter.

The 16th Conference of the Parties (COP16) was held at Cancún in 2010. It produced an agreement, not a binding treaty, that the Parties should take urgent action to reduce greenhouse gas emissions to meet a goal of limiting global warming to 2 °C above pre-industrial temperatures. It also recognized the need to consider strengthening the goal to a global average rise of 1.5 °C.[183]

Public opinion

Main article: Public opinion on climate change

In 2007–2008 Gallup Polls surveyed 127 countries. Over a third of the world's population was unaware of global warming, with people in developing countries less aware than those in developed, and those in Africa the least aware. Of those aware, Latin America leads in belief that temperature changes are a result of human activities while Africa, parts of Asia and the Middle East, and a few countries from the Former Soviet Union lead in the opposite belief.[184] In the Western world, opinions over the concept and the appropriate responses are divided. Nick Pidgeon of Cardiff University said that "results show the different stages of engagement about global warming on each side of the Atlantic", adding, "The debate in Europe is about what action needs to be taken, while many in the US still debate whether climate change is happening."[185][186] A 2010 poll by the Office of National Statistics found that 75% of UK respondents were at least "fairly convinced" that the world's climate is changing, compared to 87% in a similar survey in 2006.[187] A January 2011 ICM poll in the UK found 83% of respondents viewed climate change as a current or imminent threat, while 14% said it was no threat. Opinion was unchanged from an August 2009 poll asking the same question, though there had been a slight polarisation of opposing views.[188]

A survey in October 2009 by the Pew Research Center for the People & the Press showed decreasing public perception in the US that global warming was a serious problem. All political persuasions showed reduced concern with lowest concern among Republicans, only 35% of whom considered there to be solid evidence of global warming.[189] The cause of this marked difference in public opinion between the US and the global public is uncertain but the hypothesis has been advanced that clearer communication by scientists both directly and through the media would be helpful in adequately informing the American public of the scientific consensus and the basis for it.[190] The US public appears to be unaware of the extent of scientific consensus regarding the issue, with 59% believing that scientists disagree "significantly" on global warming.[191]

By 2010, with 111 countries surveyed, Gallup determined that there was a substantial decrease in the number of Americans and Europeans who viewed Global Warming as a serious threat. In the US, a little over half the population (53%) now viewed it as a serious concern for either themselves or their families; this was 10% below the 2008 poll (63%). Latin America had the biggest rise in concern, with 73% saying global warming was a serious threat to their families.[192] That global poll also found that people are more likely to attribute global warming to human activities than to natural causes, except in the USA where nearly half (47%) of the population attributed global warming to natural causes.[193]

On the other hand, in May 2011 a joint poll by Yale and George Mason Universities found that nearly half the people in the USA (47%) attribute global warming to human activities, compared to 36% blaming it on natural causes. Only 5% of the 35% who were "disengaged", "doubtful", or "dismissive" of global warming were aware that 97% of publishing US climate scientists agree global warming is happening and is primarily caused by humans.[194]

Researchers at the University of Michigan have found that the public's belief as to the causes of global warming depends on the wording choice used in the polls.[195]

In the United States, according to the Public Policy Institute of California's (PPIC) eleventh annual survey on environmental policy issues, 75% said they believe global warming is a very serious or somewhat serious threat to the economy and quality of life in California.[196]

A September 2011 Angus Reid Public Opinion poll found that Britons (43%) are less likely than Americans (49%) or Canadians (52%) to say that "global warming is a fact and is mostly caused by emissions from vehicles and industrial facilities." The same poll found that 20% of Americans, 20% of Britons and 14% of Canadians think "global warming is a theory that has not yet been proven."[197]

Other views

Most scientists agree that humans are contributing to observed climate change.[66][198] National science academies have called on world leaders for policies to cut global emissions.[199] However, some scientists and non-scientists question aspects of climate-change science,[198][200][201] see: list of scientists opposing global warming consensus.

Organizations such as the libertarian Competitive Enterprise Institute, conservative commentators, and some companies such as ExxonMobil have challenged IPCC climate change scenarios, funded scientists who disagree with the scientific consensus, and provided their own projections of the economic cost of stricter controls.[202][203][204][205] In the finance industry, Deutsche Bank has set up an institutional climate change investment division (DBCCA),[206] which has commissioned and published research[207] on the issues and debate surrounding global warming.[208] Environmental organizations and public figures have emphasized changes in the climate and the risks they entail, while promoting adaptation to changes in infrastructural needs and emissions reductions.[209] Some fossil fuel companies have scaled back their efforts in recent years,[210] or called for policies to reduce global warming.[211]

Etymology

The term global warming was probably first used in its modern sense on 8 August 1975 in a science paper by Wally Broecker in the journal Science called "Are we on the brink of a pronounced global warming?".[212][213][214] Broecker's choice of words was new and represented a significant recognition that the climate was warming; previously the phrasing used by scientists was "inadvertent climate modification," because while it was recognized humans could change the climate, no one was sure which direction it was going.[215] The National Academy of Sciences first used global warming in a 1979 paper called the Charney Report, which said: "if carbon dioxide continues to increase, [we find] no reason to doubt that climate changes will result and no reason to believe that these changes will be negligible."[216] The report made a distinction between referring to surface temperature changes as global warming, while referring to other changes caused by increased CO2 as climate change.[215]

Global warming became more widely popular after 1988 when NASA climate scientist James Hansen used the term in a testimony to Congress.[215] He said: "global warming has reached a level such that we can ascribe with a high degree of confidence a cause and effect relationship between the greenhouse effect and the observed warming."[217] His testimony was widely reported and afterward global warming was commonly used by the press and in public discourse.[215]

See also

   

출처: <http://en.wikipedia.org/wiki/Global_warming>

'지구별 이야기 > 기후와 지구온난화' 카테고리의 다른 글

Major Greenhouse Gas Reductions Needed by 2050: IPCC  (0) 2016.06.27
지구환경과 국제적 조직  (0) 2016.06.27
지구온난화  (0) 2016.06.27
Global warming  (0) 2016.06.27
Vinus Vortex  (0) 2016.06.26

   

   

지구 온난화

   

가. 개요

(1) 세계기상기구(WMO)와 유엔환경계획(UNEP)이 공동 추진하고 있는 "기후변화에 관한 정부 간 협정(IPCC)"의 1차 과학보고서(1990)에 의하면 과거 100 년 동안 기온이 약 0.5 ℃ 상승하였으며, 특히 1972년 이후 약 10년 동안 약 0.3 ℃의 급격한 기온상승이 나타났음

(2) 기온상승은 이산화탄소(CO2), 메탄(CH4), 아산화질소(N2O), 프레온가스(CFCs) 등의 온실기체에 의한 온실효과로 야기됨

(3) 1750년 이후 이산화탄소, 메탄, 아산화질소의 대기중 농도는 1992년 기준으로 각각 30 %, 14.5 %, 15 % 증가하였음

(4) 1980년부터 1990년동안 이산화탄소, 프레온가스, 메탄, 아산화질소 등의 온난화 영향은 각각 55 %, 17 %, 15 %, 6 %로 나타났음

(5) 기후변화에 관한 정부간 협정의 제2차 과학보고서 (1995)에 의하면 2100년까지 기온은 약 2 ℃, 해수면은 약 50 ㎝ 정도 상승될 것으로 예측됨

(6) 지구온난화 방지를 위해 '92년 6월 브라질 리우에서 개최된 유엔환경개발회의에서 "기후변화협약"이 채택되었음. 우리나라를 포함하여 약 143개국이 본 협약에 서명하였고, '94. 3. 20.부터 본 협약이 발효되었음

   

나. 온실기체의 대기중 농도 현황

(1) 1994년 온실기체 대기중 농도

표 3.19.1. 1994년 온실기체 대기중 농도

   

온실기체

CO2

CH4

N2O

CFC-11

HCFC-22

CF4

농 도

385 ppm

1,720 ppm

318 ppb

268 ppt

110 ppt

72 ppt

* HCFC-22와 CF4는 각각 프레온가스 대체물질과 퍼플르오로 탄소(perfluoro-carbon)을 나타냄

(2) 1984년 이후 이산화탄소, 메탄, 아산화질소의 년평균 증가율은 각각 0.4%, 0.6%, 0.25%로 매년 1.5 ppm, 10 ppb, 0.8 ppb씩 증가하고 있음

(3) 1990년이후 HCFC-22, CF4 의 증가율은 각각 5%, 2% 로 매년 5 ppt, 1.2 ppt씩 증가하고 있으나, CFC-11은 더 이상 증가하지 않음

(4) 오존층 보호를 위한 몬트리올 의정서의 구체적 실현에 따라 프레온 가스의 농도 증가는 멈추었으나, 대체물질인 HCFC-22, CF4는 증가하고 있음

(5) 우리나라에서 온실기체 배출량 및 농도 현황

(가) 이산화탄소는 1980년 108백만톤에서 1993년 270백만톤으로 2배 이상 증가하였고, 분야별로는 산업, 주택/상업, 교통, 비에너지, 기타에서 각각 129, 65, 62, 9, 5 백만톤 발생하였음. 또한 연료별로는 고체, 액체, 기체에서 각각 66, 112, 28 백만톤 발생하였음

(나) 메탄 배출량은 1993년 기준으로 1.6백만톤이며, 분야별로는 에너지, 농업, 폐기물에서 각각 251,650톤, 691,870톤, 691,870톤 발생하였음

(다) 이산화질소 배출량은 1993년 기준으로 최저 267톤, 최고 32,803톤으로 추산되고, 대부분 농업 부문에서 발생되고 있음

(라) 프레온 가스 및 할론의 총사용량은 1993년 기준 11,202톤이며, 이중 프레온 가스는 10,794톤, 할론은 408톤이었음

(마) 이산화탄소, 아산화질소, 프레온가스의 1994년 기준으로 대기중 농도는 362 ppm, 312 ppb, 270 ppt이였음

   

다. 지구 온난화 영향

(1) 기후변화

(가) 극심하게 더운날과 추운날의 발생 빈도 증가

(나) 기온상승으로 물의 순환을 촉진시켜, 어느 특정지역에서 극심한 가뭄과 홍수를 발생시킴

(2) 농업과 삼림

(가) 열대와 적도 지역에서 기온상승에 의한 증발량 증가로 곡물재배를 할 수 없을 정도로 토양 수분 낮아져 곡물 생산량 감소가 예상됨. 그러나 북유럽, 소련, 북미지역에서는 곡물 생산 증가가 예상됨

(나) 유럽서부. 미국 남부, 호주 서부, 남부 아프리카 지역 등에서 곡물 생산이 감소되어 세계 곡물 가격에 막대한 영향을 미칠 것으로 예상됨

(다) 기온상승에 의해 한대 지역의 숲은 병충해의 분포가 확장되고, 건조 및 준건조 지역에서 수분 공급이 약화되어 산불에 의한 자연피해 예상됨

(라) 기온상승에 의해 북반구에서는 나무들의 서식대가 수백 km 정도 극지역으로 이동되어 종의 분포 변화와 삼림의 생리적 적응성이 변화되고, 성장율에 큰 변화를 일으켜 나무성장이 둔화될 것으로 예상됨. 남반구에서는 기온상승에 삼림이 잘 적응하여 큰 피해가 없을 것으로 예상됨

(3) 수자원

(가) 농업용수 부족으로 경작을 포기해야 할 토지는 세계 기준 경작지의 5 %에 이르는 약 1천3백만 헥타르에 이르며, 이러한 손실을 회복시키기 위한 댐, 운하, 기타 하부구조의 건설에 260∼520억달러가 요구될 것으로 예상됨

(나) 지구온난화에 의해 증발량 증가로 토양수분이 손실되어 전 세계적으로 약 6천만 헥타르의 관개가 필요하며, 이로 인해 관개에 드는 총액은 약 1천5백억∼3천억 달러가 예상됨

(4) 해수면 상승

(가) 지구온난화에 의한 해수면 상승은 대규모 토지 손실과 습지대를 감소시킴. 이로 인해 새와 물고기 등의 먹이 및 서식처의 감소 등 생태계에 매우 심각한 사태가 초래 예상됨

(나) 해수면 상승으로 연안 지역에 해수 범람과 폭풍 피해 증가 예상됨

   

(5) 환경과 보건

(가) 해수면 상승으로 개발도상국가들의 해안 저지대 지역, 섬지역, 건조 목초 지역, 도시 빈민 지역 등에 식수의 유용상에 큰 변화가 야기되어 수질오염 문제가 발생되며, 고지대로 이주시켜 바이러스와 같은 질병의 형태를 변형시켜 질병이 만연됨

(나) 지구온난화에 의한 지표기온 상승으로 스모그 형성이 촉진되고, 대기순환과 강수 형태의 변화로 결국 산성물질의 수송과 침적에 변화를 일으킴. 이러한 현상으로 발생하는 산성비는 이산화탄소의 주요 흡수원인 삼림을 훼손시켜 지구온난화를 가속시킴

   

라. 우리나라에 미치는 영향

(1) 이산화탄소의 농도가 현재의 두 배로 증가할 때, 우리나라의 하천 유량은 봄과 여름에 증가하고 이로 인해 홍수의 빈도가 증가될 것으로 예상됨. 한편 대청댐, 안동댐, 남강댐, 섬진강 댐에서는 겨울철에 하천 유량이 감소되며 유량 유지에 어려움이 예상됨

(2) 이산화탄소의 농도가 현재의 두 배로 증가할 때, 우리나라의 쌀 생산량은 광주를 포함한 남부 논농사 지대에서 30 % 감소, 수원 지역에서 40 % 감소가 예상됨

(3) 과거 90년간 지구온난화와 수반되어 우리나라의 기온은 0.8±0.3 ℃증가된 것으로 추정됨. 이러한 지구 온난화 경향이 다음 세기에도 계속 유지된다고 가정할 때 21세기말 한반도 기온은 현재보다 약1.4 ℃ 정도 상승할 것으로 예상됨

   

마. 기후변화협약

(1) 기후변화협약 발전연혁

표 3.19.2. 기후변화협약 발전연혁

   

연 도

내 용

1988.11

지구온난화 방지를 위한 「세계기상기구(WMO)」「유엔환경계획(UNEP)」주관하에 기후변화에 관한 정부간 협의회(IPCC)설립

1990.08

기후변화의 원인, 영향 및 대응에 관한 IPCC 종합보고서 발표

1990.11

제45차 UN총회에서, 기후변화협약 제정을 위한 「정부간 협상위원회(INC)」설치의결

1990.12

「정부간 협상위원회(INC)」설립

1992.05

제5차 INC회의에서 기후변화협약 채택

1993.12

우리나라 가입

1994.03

50개국 가입후 3개월 경과로 협약 발효

1995.03

제1차 당사국총회(COP)개최 : 베를린, 특별작업반(AGBM) 구성(1995.08)

1996.07

제2차 당사국총회(COP)개최 : 제네바

1997.12

제3차 당사국총회(COP)개최 : 교토(교토의정서 채택)

1998.11

제4차 당사국총회(COP)개최 : 부에노스아이레스

1998.03

현재 174개국 가입

   

(2) 기후변화협약의 주요내용

표 3.19.3. 기후변화협약의 주요내용

   

전문

  

내 용

목적(2조)

  

지구온난화를 방지할 수 있는 수준으로 온실가스의 농도 안정화

원칙(3조)

  

형평성 : 공통의 차별화된 책임, 국가별 특수사정 고려

  

  

효율성 : 예방의 원칙, 정책 및 조치, 대상 온실가스의 포괄성,

공동이행

  

  

경제발전 : 지속가능한 개발의 촉진, 개방적 국제경제체제 촉진

의무사항

일반의무사항

온실가스 배출통계 작성발표, 정책 및 조치의 이행(4조1항), 연구

및 체계적 관측(5조), 교육 훈련 및 공공인식(6조), 정보교환

  

특정의무사항

배출원 흡수원에 관한 특정의무사항

: 1990년 수준으로 온실가스 배출 안정화에 노력(4조2항)

  

  

재정지원 및 기술이전에 관한 특정 공약(4조3항∼5항)

  

  

개도국의 특수상황 고려(4조8항∼10항)

기구 및 제도

기구

당사국 총회(7조)/ 사무국(8조)/ 과학기술자문 부속기구(9조)

이행자문기구(10조)/ 재정기구(11조)

  

제도

서약 및 검토(Pledge and Review)제도(12조)

: 국가보고서 제출 및 당사국 총회 검토

이행과 관련된 의문점 해소를 위한 다자간 협의과정(13조)

분쟁조정제도(14조)

   

(3) 당사국 총회(Conference of Parties)

(가) 제1차 당사국 총회(1995년 3월 28일∼4월 7일, 베를린)

o『베를린 위임사항(Berlin Mandate)』채택

- 2000년까지의 감축의무만으로 지구온난화 현상에 대처하기에 불충분함 인정

- 2000년이후 감축목표에 관한 의정서를 1997년 제3차 당사국 총회에서 채택하기로 결정

- 온실가스 감축의무 부담 대상국을 Annex I 국가로 한정

- 감축 일정이외에 선진국이 공동으로 채택할 지구온난화 방지를 위한 정책과 조치를 협의대상으로 채택하기로 결정

- 의정서(안) 준비를 위한 「특별작업반(AGBM : Ad-hoc Group on Berlin Mandate)」 설치 결정

- 멕시코 등 "선발개도국의 책임분담론"이 제기되었으나, 우선 선진국에 한정된 의무로 하기로 결정

   

※ 참고 : 베를린 위임사항(Berlin Mandate) 개요

·2005년, 2010년 및 2020년까지 Annex I 선진국의 법적구속력(Legally Binding)이 있는 수량화된 감축목표 설정(Quantified Emission Limitation and Reduction Objectives : QELROs)

·Non-Annex I 개도국에 대해서는 새로운 의무를 도입하지 않음

(Without Introduction New Commitment)

   

   

※ 참고 : Annex I 국가 - 1992년 협약체결 당시 OECD 24개국과 동구권 11개국을

포함한 35개국(우리나라는 포함않됨)

Annex II 국가 - 1992년 협약체결 당시 OECD 24개국

(우리나라는 포함 않됨)

   

(나) 제2차 당사국 총회(1996년 7월 8일∼19일, 제네바)

o 각료급 회의에서 각료선언(Ministrial Declaration) 채택

- "기후변화에 관한 정부간 협의회(IPCC) 제2차 평가보고서"를 공식 인증

- 2000년이후의 온실가스 배출감축 목표설정을 위한 협상(Berlin Mandate)을 가속화하고, 그 결과를 법적 구속력있는 문서화하기로 합의

- 베를린 위임사항에 관한 특별그룹(AGBM)은 1997년 10월까지 선진국의 의무강화를 위한 구체적 방안을 모색하기로 결의

- 개도국의 자발적 참여(의장안 10조) 여부는 제3차 당사국 총회에서 논의하기로 결정

(다) 제3차 당사국 총회(1997년 12월 1∼11일, 교토)

o 국제법적 구속력이 있는 「교토의정서(Kyoto Protocol)」채택

- 미국, 일본, EU 등 「Annex I 국가」38개국을 대상으로 온실가스 감축 목표량 설정

선진국들의 온실가스 감축목표율

(단위 : %)

미국

독일

EU

영국

독일

캐나다

프랑스

스페인

호주

러시아

체코

아이스랜드

-7

-6

-8

-8

-8

-6

-8

-8

+8

0

-8

+10

주 : 삭감목표율은 이산화탄소(CO2), 메탄(CH4), 아산화질소(N2O) 등 3개 온실가스는 1990년 배출기준 HFCs, PFCs, SF6 등 3종의 가스는 1995년 대비 동율로 삭감

- 이행기간은 2008년에서 2012년까지 5년간 1990년 배출수준 대비 평균 5.2%의 온실가스 감축

- 미국측 주장대로 1990년 이후 토지이용 변화와 산림에 의한 온실가스 흡수분(sink)을 의무이행 당사국의 감축량에 포함

- 우리나라와 멕시코 등 선발개도국의 온실가스 배출감축 참여문제는 향후에 결정하기로 하고 개도국의 "자발적 참여" 조항(의정안 10조) 자체를 삭제

- EU의 "공동목표설정(Bubble)"을 인정하여 개별국이 아닌 전체 가입국의 감축노력 및 성과 인정

- 선진국에 부과된 감축목표 실현을 위해 선진국의 개도국에 대한 관련 프로젝트를 인정하여 자국의 감축목표 달성에 활용가능

- 공동이행(Joint Implementation)과 배출권 거래(Emissions Trading)등 자국이외 국가에서의 감축을 실적으로 인정하는 "신축성(Flexibility)" 조항 마련

- 선진국과 개도국간의 온실가스의 거래실적을 인정하는 청정개발체제(CDM; Clean Deve- lopment Mechanism) 도입인정

특히, 2000년부터의 개도국 투자 및 기술지원, 흡수원과 관련된 선진국의 실적을 2008년부터의 의무이행분에 산입할 수 있도록 규정

(4) 교토의정서에서 인정된 감축의무 이행의 유연성(Flexibility Mechanism)을 제고키 위한 제도

(가) 공동이행제도(Joint Implementation) : 제6조

A국이 자금과 기술을 B국에 투자하여 추가적으로 감축한 경우, 그 감축분의 일정부분을 A국의 감축실적으로 인정(Credit)하는 제도, 의정서 부속서 B국가간의 거래만 인정되므로 선진국과 동구권의 거래가 주종을 이룰 전망

(나) 배출권거래제도(Emissions Trading) : 제17조

각국이 온실가스 배출 한도량을 설정한 후, 한도량에 미달하는 경우, 잉여분을 배출권 형태로 다른 나라에 판매할 수도 있고, 한도량을 초과한 경우, 다른 나라로부터 배출권을 구매하여 초과분을 대체시키는 제도로 현재는 Annex I 국가간의 거래만 가능

(다) 청정개발체제(CDM: Clean Development Mechanism) : 제12조

선진국이 개도국에 투자하여 발생된 온실가스 배출감축분을 자국의 감축실적에 반영하는 제도로 미국 등 선진국이 해외투자 등 개도국 거래 ? 교역에 가장 커다란 영향을 미칠 조항

※ 공동이행제도(JI), 배출권거래제도(ET)등은 선진국들 사이에서만 적용가능한 방안으로 우리나 라가 부속서(Annex) B국가가 아닌 현재에는 청정개발체제(CDM)가 활용 가능함.

   

참고문헌

1. 국립환경연구원(1992), 지구환경연구를 위한 기초 조사(I)

2. 국립환경연구원(1993), 기후변화 협약에 대한 우리나라의 대응 방안(이산화탄소를 중심으로)

3. 삼성지구환경연구소(1998), 기후변화협약(그 실체와 대응)

4. 이회성(1994), 기후변화협약과 한국경제

5. 환경부(1998), 지구환경노력과 우리의 대응노력

6. IPCC(Intergovernmental Panel on Climate Change, 1990), Climate Change, The IPCC

Scientific Assessment

7. IPCC(Intergovernmental Panel on Climate Change, 1995), Draft Summary for Policymakers

of The Contribution of Working Group I to The IPCC Second Assessment Report

작성자 : 대기공학과 과 장 박일수(이학박사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-19.htm>

   

'지구별 이야기 > 기후와 지구온난화' 카테고리의 다른 글

지구환경과 국제적 조직  (0) 2016.06.27
Global warming  (0) 2016.06.27
Global warming  (0) 2016.06.27
Vinus Vortex  (0) 2016.06.26
이산화탄소  (0) 2016.06.26