RTO care

이황화탄소 +2

3. 이황화탄소

가. 성상

o 화학식 : CS2(carbon disulfide)

o 분자량 : 76.14

o 밀도 : 1.293(0℃, 1atm)

o 끓는점 : 46.25℃(760㎜Hg)

o 녹는점 : -111.53℃(760㎜Hg)

o 물에 대한 용해도 : 0.22g CS2/100㎖ H2O(22℃)

o 상온에서 무색투명하고, 휘발성이 강하면서 일반적으로 불쾌한 냄새가 나는 유독성액체로 공 기 중에서 서서히 분해되어 황색을 띰

o 비교적 불안정하여 상온에서도 빛에 의해 분해되며, 인화되기 쉽고, 일단 불이 붙으면 청색의 불꽃을 내면서 이산화황의 자극성 냄새를 발생함

(CS2 + 3O2 → CO2 + 2SO2)

o 고온에서는 수소에 의해 환원되어 황화수소, 메탄, 탄소 등을 방출함

(CS2 + 3H2 → 2CO2 + 2SO2)

   

나. 오염원

o 비스코스 레이온(viscose rayon)과 셀로판(cellophane) 제조공정 중에 사용되어 발생함

-알칼리 섬유질에 CS2를 가하면 섬유질 크산토겐산나트륨(sodium cellulose xanthate)이 생성

(cellulose-RONa + CS2 → cellulose-RO(CS)SNa)

-이것을 묽은 수산화나트륨 용액으로 처리, 콜로이드성 비스코스 용액을 만듬

-숙성된 이 용액으로부터 비스코스 레이온 실이나 셀로판을 제조

o 사염화탄소 생산의 원료로 사용되어 발생함

-이황화탄소를 철, 염화알루미늄, 삼염화안티몬, 오염화안티몬 등의 촉매 하에 염소 기체에 반 응시키면 사염화탄소가 생성됨

(CS2 + 3Cl2 → S2Cl2 + CCl4)

   

다. 독성

(1) 급성 독성

(가) 급성독성은 주로 재해로 일어남

(나) 파이프의 파열이나 탱크의 훼손 등에 의해 우발적으로, 또는 작업중 부주의로 1000ppm 이상 고농도의 이황화탄소에 접촉하거나 흡입한 경우에 급성 독성을 일으킴

(다) 중독 증상은 알콜, 클로로포름 등의 마취작용과 비슷하고, 통상 흥분상태를 거쳐 마비상태로 되며 심하면 호흡곤란을 일으켜 사망함

(2) 아급성 독성

(가) 수백 ppm의 이황화탄소 증기환경 중에서 매일 작업을 계속했을 때 발생 가능함

(나) 몇 주로부터 몇 개월 후에 두통, 신경과민, 야간에는 불면, 주간에는 졸리는 상태, 각종 자율 신경저해, 성욕감퇴, 소화불량 등의 증상이 나타남

(다) 이 상태가 계속되면 정신장해를 일으킬 수도 있으나, 이황화탄소로 오염된 환경에서 벗어나면 몇 주 안으로 회복되는 것이 보통임

(3) 만성 중독

(가) 수 십 ppm에 가까운 이황화탄소의 환경농도에서 발생 가능함

(나) 전신권태, 두통, 현기증, 건망증, 가슴 답답함, 불면, 다리가 피로한 상태 등을 일으킴

(다) 신경증(노이로제), 신경염 등의 신경 증상이 주로 발생된 예도 있음

(라) 그 외 가벼운 빈혈, 동맥경화증을 일으킨 경우도 있음

(4) 피부에 대한 독성

(가) 이황화탄소는 지용성이기 때문에 피부의 기름을 빼앗고, 피부를 건조시키며, 살갗이 터져 유해세균의 감염에 노출되기 쉬움

(나) 이황화탄소가 피부에 닿으면 따끔따끔함을 느끼며, 완전히 증발하지 않았을 때에는 동통을 일으키다가 화상을 입을 수도 있음

   

라. 오염사례

(1) 1856년, 델피치는 24건의 이황화탄소 중독 사례를 보고하였고, 동물 실험을 통하여 그 증상을 확인하여 80건 이상의 이황화탄소 신경증을 보고함

(2) 영국의 부루스와 포만은 이황화탄소 만성 중독 사건을 발견함

(3) 1899년, 로덴하이머는 독일의 고무공장에서 이황화탄소 만성 중독 사건을 발견하고, 약 50건의 급성 정신 질환 사례를 보고함

(4) 1905년, 미국에서도 많은 중독 사례가 보고되었으며, 이를 계기로 사람들은 작업 환경의 개선에 관한 필요성을 인식, 고무공장의 공정 중에서 발생되는 이황화탄소 문제는 해결됨

(5) 그러나, 그 시기에 인견사류 산업이 발달하여 빠른 속도로 확장, 이 산업에서의 이황화탄소 중독 사건은 1900년에서 1930년 사이에는 간헐적으로 보고되었고, 1930년대에는 심각하게 됨

(6) 1934년, 리넬리티와 퀘릴리는 이황화탄소 중독에 의한 정신장애 및 다발성 신경장애에 대하여 보고함

(7) 1938년, 고르디는 펜실바니아 연구를 통하여 이황화탄소에 대한 작업장 허용 한계 농도를 20ppm으로 제안하였고, 1941년에 미국표준협회에 의해 이 안이 채택됨

(8) 우리 나라에서도 모 인견사 제조 공정에서 이 물질이 배출되어 작업 환경 문제와 인근 대기오염이 문제가 됨

(9) 이 공장은 방지시설로 세정탑 8기와 80m의 높은 굴뚝을 설치했음에도 불구하고 주변 지역의 악취 문제가 해결되지 못함

(10) 주변 지역의 대기중 오염 농도를 실측한 결과, 이황화탄소는 검출 한계 이내이었으나, 황화수소는 공장부지 경계선의 한 지점에서 0.04ppm(감지한계치 : 0.025ppm)까지 검출된 적이 있음

   

마. 관련기준

(1) 우리나라 환경 및 작업장 기준

(가) 대기환경보전법(개정 '92. 8. 8, 시행 '94. 1. 1)에서는 이황화탄소를 악취물질로 규정

(나) 산업안전보건법(개정 '90. 1. 13)에서는 이황화탄소를 작업장 유해물질로 규정하고 TWA(8시간가중 평균치) 10ppm(30㎎/㎥)을 작업환경 조건으로 정하여 경피에 주는 독성을 방지

(2) 일본 산업위생학회에서는 TWA(8시간 가중 평균치) 10ppm(30㎎/㎥)을 허용농도로 규정

(3) 미국 ACGIH(미국 산업위생정부전문가회의)에서는 TWA(8시간 가중평균치) 20ppm, STEL (단시간 노출허용농도) 30ppm을 허용농도로 규정

   

참고문헌

1. 김계덕 역, 일본분석화학회편, (1993), 분석화학편람, 783.

2. 이창기, (1993), 환경과 건강, pp72∼74.

3. Bela G. Liptak, (1984), Environmental Engineers' Handbook, Volume 2, pp 176∼181.

4. Edward J. Calabrese, Elaina M. Kenyon, (1991), Air Toxics And Risk Assessment, pp 213∼217.

5. Herman F. Mark, John J. Mcketta, JR., Donald F. Othermer, Encyclopedia of Chemical Technology, Second Completely Revised Edition, Volume 17, pp 177∼189.

6. Karel Verschuren, (1983), Handbook of Environmental Data on Organic Chemicals, Second Edition, pp 340∼341.

7. Luigi Parmeggiani, (1971), Encyclopedia of Occupational Health and Safety, pp 1090∼1091.

8. Robert Thornton Morrison, Robert Neilson Boyd, (1987), Organic Chemistry, pp 1340∼1341.

   

작성자 : 대기공학과 환경연구사 석광설(공학석사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-3.htm>

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

TDI  (0) 2016.06.24
일산화탄소  (0) 2016.06.24
먼지  (0) 2016.06.24
이산화황  (0) 2016.06.24
SO2, sulfur dioxide  (0) 2016.06.24

Carbon disulfide

From Wikipedia, the free encyclopedia

Jump to: navigation, search

This article is about the chemical substance CS2. For the software suite by Adobe Systems, see Adobe Creative Suite. For the cycle super-highway in London, see List of cycle routes in London.

  

  

Names

  

IUPAC name

Methanedithione

  

Other names

Carbon bisulfide

  

Identifiers

  

CAS Number

75-15-0 

ChEBI

CHEBI:23012 

ChemSpider

6108 

EC Number

200-843-6

Jmol 3D model

Interactive image

KEGG

C19033 

PubChem

6348

RTECS number

FF6650000

UNII

S54S8B99E8 

UN number

1131

InChI[show]

  

SMILES[show]

  

Properties

  

Chemical formula

CS2

Molar mass

76.13 g·mol1

Appearance

Colorless liquid

Impure: light-yellow

Odor

Chloroform (pure)

Foul (commercial)

Density

1.539 g/cm3 (-186°C)

1.2927 g/cm3 (0 °C)

1.266 g/cm3 (25 °C)[1]

Melting point

111.61 °C (168.90 °F; 161.54 K)

Boiling point

46.24 °C (115.23 °F; 319.39 K)

Solubility in water

0.258 g/100 mL (0 °C)

0.239 g/100 mL (10 °C)

0.217 g/100 mL (20 °C)[2]

0.014 g/100 mL (50 °C)[1]

Solubility

Soluble in alcohol, ether, benzene, oil, CHCl3, CCl4

Solubility in formic acid

4.66 g/100 g[1]

Solubility in dimethyl sulfoxide

45 g/100 g (20.3 °C)[1]

Vapor pressure

48.1 kPa (25 °C)

82.4 kPa (40 °C)[3]

Refractive index (nD)

1.627[4]

Viscosity

0.436 cP (0 °C)

0.363 cP (20 °C)

Structure

  

Molecular shape

Linear

Dipole moment

0 D (20 °C)[1]

Thermochemistry

  

Specific

heat capacity (C)

75.73 J/mol·K[1]

Std molar

entropy (So298)

151 J/mol·K[1]

Std enthalpy of

formationfHo298)

88.7 kJ/mol[1]

Gibbs free energyfG˚)

64.4 kJ/mol[1]

Std enthalpy of

combustioncHo298)

1687.2 kJ/mol[3]

Hazards

  

Safety data sheet

See: data page

GHS pictograms

   

   

[4]

GHS signal word

Danger

GHS hazard statements

H225, H315, H319, H361, H372[4]

GHS precautionary statements

P210, P281, P305+351+338, P314[4]

ICSC 0022

EU classification (DSD)

F

T

Xi

R-phrases

R11, R36/38, R48/23, R62, R63

S-phrases

(S1/2), S16, S33, S36/37, S45

Inhalation hazard

Irritant

Eye hazard

Irritant

Skin hazard

Irritant

NFPA 704

4

3

0

Flash point

43 °C (45 °F; 230 K)[1]

Autoignition

temperature

102 °C (216 °F; 375 K)[1]

Explosive limits

1.3%-50%[5]

Lethal dose or concentration (LD, LC):

  

LD50 (median dose)

3188 mg/kg (rat, oral)

LC50 (median concentration)

>1670 ppm (rat, 1 hr)

15500 ppm (rat, 1 hr)

3000 ppm (rat, 4 hr)

3500 ppm (rat, 4 hr)

7911 ppm (rat, 2 hr)

3165 ppm (mouse, 2 hr)[6]

LCLo (lowest published)

4000 ppm (human, 30 min)[6]

US health exposure limits (NIOSH):

  

PEL (Permissible)

TWA 20 ppm C 30 ppm 100 ppm (30-minute maximum peak)[5]

REL (Recommended)

TWA 1 ppm (3 mg/m3) ST 10 ppm (30 mg/m3) [skin][5]

IDLH (Immediate danger)

500 ppm[5]

Related compounds

  

Related compounds

Carbon dioxide

Carbonyl sulfide

Carbon diselenide

Supplementary data page

  

Structure and

properties

Refractive index (n),

Dielectric constantr), etc.

Thermodynamic

data

Phase behaviour

solid–liquid–gas

Spectral data

UV, IR, NMR, MS

 verify (what is 

   

 ?)

  

Infobox references

  

Carbon disulfide

Carbon disulfide is a colorless volatile liquid with the formula CS2. The compound is used frequently as a building block in organic chemistry as well as an industrial and chemical non-polar solvent. It has an "ether-like" odor, but commercial samples are typically contaminated with foul-smelling impurities.[7]

Contents

 [hide

Occurrence and manufacture[edit]

Small amounts of carbon disulfide are released by volcanic eruptions and marshes. CS2 once was manufactured by combining carbon (or coke) and sulfur at high temperatures. A lower-temperature reaction, requiring only 600 °C, utilizes natural gas as the carbon source in the presence of silica gel or alumina catalysts:[7]

2 CH4 + S8 2 CS2 + 4 H2S

The reaction is analogous to the combustion of methane. It is isoelectronic with carbon dioxide. CS2 is highly flammable:

CS2 + 3 O2 CO2 + 2 SO2

Global production/consumption of carbon disulfide is approximately one million tonnes, with China consuming 49%, followed by India at 13%, mostly for the production of rayon fiber.[8] United States production in 2007 was 56,000 tonnes.[9]

Reactions[edit]

Compared to CO2, CS2 is more reactive toward nucleophiles and more easily reduced. These differences in reactivity can be attributed to the weaker π donor-ability of the sulfido centers, which renders the carbon more electrophilic. It is widely used in the synthesis of organosulfur compounds such as metam sodium, a soil fumigant and is commonly used in the production of the soft fabric viscose.

Addition of nucleophiles[edit]

Nucleophiles such as amines afford dithiocarbamates:

2 R2NH + CS2 [R2NH2+][R2NCS2]

Xanthates form similarly from alkoxides:

RONa + CS2 [Na+][ROCS2]

This reaction is the basis of the manufacture of regenerated cellulose, the main ingredient of viscose, rayon and cellophane. Both xanthates and the related thioxanthates (derived from treatment of CS2 with sodium thiolates) are used as flotation agents in mineral processing.

Sodium sulfide affords trithiocarbonate:

Na2S + CS2 [Na+]2[CS32]

Chlorination[edit]

Chlorination of CS2 is the principal route to carbon tetrachloride:[7]

CS2 + 3 Cl2 CCl4 + S2Cl2

This conversion proceeds via the intermediacy of thiophosgene, CSCl2.

Coordination chemistry[edit]

CS2 is a ligand for many metal complexes, forming pi complexes. One example is CpCo(η2-CS2)(PMe3).[10]

Carbon disulfide hydrolase[edit]

Carbon disulfide is naturally formed in the mudpots of volcanic solfataras. It serves as a source of hydrogen sulfide, which is an electron donor for certain organisms that oxidize it into sulphuric acid or related sulfur oxides. The hyperthermophilic Acidianus strain was found to convert CS2 into H2S and CO2. The enzyme responsible for this conversion is termed carbon disulfide hydrolase.[11]

The enzyme can be obtained in both apoenzyme and holoenzyme forms. The enzyme is predicted to have an isoelectric point of 5.92 and a molecular mass of 23,576 Da. The enzyme is hexadecameric.[11]

The apoenzyme form, lacking the zinc cofactor, has a molecular weight of 382815.4 g/mol. The chloride ion and the 3,6,9,12,15,18,21,24,27,30,33,36,39-tridecaoxahentetracontane-1,41-diol (C28H58O15) are the two main ligands seen on the enzyme in this form. There are 16 polymer chains seen in this form contributing to the heaviness of the enzyme. This form is also sometimes termed the selenomethionine form.[12]

CS2 hydrolase in its holoenzyme has a cofactor bound to it. In this form the only ligand to be found is the zinc ion and the molecular weight of the enzyme overall is 189404.8 g/mol. There are only eight polymer chains seen in this form and this may be due to the fact that the enzyme catalyzes the conversion of CS2 in this form.[12]

The enzyme is similar to that of carbonic anhydrases. The enzyme monomer of CS2 hydrolase displays a typical β-carbonic anhydrase fold and active site. Two of these monomers form a closely intertwined dimer with a central β-sheet capped by anα-helical domain. Four dimers form a square octameric ring through interactions of the long arms at the N and C termini. Similar ring structures have been seen in strains of carbonic anhydrases, however, in CS2 hydrolase, two octameric rings form a hexadecamer by interlocking at right angles to each other. This results in the blocking of the entrance to the active site and the formation of a single 15-Å-long, highly hydrophobic tunnel that functions as a specificity filter. This provides a key difference between carbonic anhydrase and CS2 hydrolase. This tunnel determines the enzyme's substrate specificity for CS2, which is hydrophobic as well.

Mechanism[edit]

The mechanism by which this hydrolase converts CS2 into H2S is similar to that of how carbonic anhydrase hydrates CO2 to HCO3.[citation needed] This similarity points to a likely mechanism. The zinc at the active site is tetrahedral, being coordinated by Cys 35, His 88, Cys 91 and water.[citation needed] The water is deprotonated to give a zinc hydroxide that adds the substrate to give a Zn-O-C(S)SH intermediate.[citation needed] A similar process is proposed[by whom?] to convert COS into CO2.[citation needed]

CS2 + H2O COS + H2S

COS + H2O CO2 + H2S

Polymerization[edit]

CS2 polymerizes upon photolysis or under high pressure to give an insoluble material called "Bridgman's black", named after the discoverer of the polymer, P. W. Bridgman. Trithiocarbonate (-S-C(S)-S-) linkages comprise, in part, the backbone of the polymer, which is a semiconductor.[13]

Uses[edit]

Fumigation[edit]

It can be used in fumigation of airtight storage warehouses, airtight flat storages, bins, grain elevators, railroad box cars, shipholds, barges and cereal mills.[14]

Insecticide[edit]

Carbon disulfide is used as an insecticide for the fumigation of grains, nursery stock, in fresh fruit conservation and as a soil disinfectant against insects and nematodes.[15]

Solvent[edit]

Carbon disulfide is a solvent for phosphorus, sulfur, selenium, bromine, iodine, fats, resins, rubber, and asphalt.[16] It has been used in the purification of single-walled carbon nanotubes.[17]

Manufacturing[edit]

The principal industrial uses of carbon disulfide are the manufacture of viscose rayon, cellophane film, carbon tetrachloride and xanthogenates and electronic vacuum tubes.

Working Fluid[edit]

Various attempts were made in the 19th century to use carbon disulfide as the working fluid in steam engines and locomotive applications, due to its low boiling point; it would be either directly heated by the fuel, or would be used to recover waste heat from the combustion gases of other fuels and the condensing of steam in a traditional boiler. These experiments were never successful, both due to the low temperatures involved and the extreme risk of both poisoning and explosion.[18]

Spectroscope prisms[edit]

Due to its high optical dispersion it was used in some spectroscopes.[19]

Health effects[edit]

At high levels, carbon disulfide may be life-threatening because it affects the nervous system. Significant safety data comes from the viscose rayon industry, where both carbon disulfide as well as small amounts of H2S may be present.

Carbon disulfide has been linked to toxin-induced parkinsonism. [20]

See also[edit]

   

출처: <https://en.wikipedia.org/wiki/Carbon_disulfide>

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

일산화탄소  (0) 2016.06.24
이황화탄소  (0) 2016.06.24
먼지  (0) 2016.06.24
이산화황  (0) 2016.06.24
SO2, sulfur dioxide  (0) 2016.06.24