RTO care

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

황사  (0) 2016.06.25
악취  (0) 2016.06.25
실내공기오염  (0) 2016.06.24
시정장애  (0) 2016.06.24
산성비  (0) 2016.06.24

14. 실내공기오염

가. 서언

o 일반적으로 도시인들의 생활은 대부분 지하철, 지하상가, 공공건물, 작업장 및 사무실 등의 각종 실내환경에서 생활하고 있으나, 실내공기는 자연 희석율이 부족하여 오염된 공기가 계속적으로 순환되고 있음

o 생활수준의 향상으로 다양하고 새로운 건축자재 및 생활용품 등에서 오염물질이 방출될 수 있어 실내 거주자들은 그들의 오감과 신체자극으로 실내공기의 오염정도를 감지.

o 인간의 신체감각이 독성보다는 쾌적성 감지에 더 민감하므로 일산화탄소, 부유미립자, 석면 등의 오염물질은 위험수준 이상에서도 감지하지 못하는 경우가 있음.

o 따라서 실내 거주자들은 일시적 또는 만성적인 건강과 관련된 증상을 호소하는 사례가 증 가하여 새로운 사회문제를 발생시켰으며 다양한 실내공간에서의 공기오염에 대한 중요성을 인식하게 되었음.

나. 오염원

o 지하철, 지하상가 및 지하도 등 실내공간은 외부로부터 유입되는 오염원과 내부에서 발생 된 오염원으로 나눌 수 있음.

(1) 외부오염원은 지하철의 경우 지하철이 역으로 진입할 때 발생하는 외부대기오염물질, 그리고 천정에 살포된 흡음물질과 바닥에 쌓인 먼지, 통행인들의 의복 및 신발과 흡연에 의한 오염등임.

(2) 내부오염원은 지하공간에 설치된 식당, 다방 등에서 사용하는 석유 및 가스와 사용인의 흡연 에 의한 오염이 대부분을 차지하고 있으나 기타 생활용품 및 건축자재 등에서 발생하는 오염도 무시할 수 없는 실정임.

다. 오염상태

(1) 환경부에서는 지하철, 지하상가, 백화점 등 지하생활공간에 대한 전국적인 오염현황을 파악하기 위하여 '90년부터 각 시·도 보건환경연구원에서 자체적으로 정기적인 조사를 실시하도록 하고 있음.

(2) 표 3.14.1은 서울지역의 지하철 및 지하상가의 공기오염도를 측정한 결과로서 우리나라에 지하공간에 대한 실내환경기준치가 없어 오염정도를 판단하기는 어려우나 환경부에서 지하 공간에 대한 권고기준을 정하고 있음.

(3) 권고기준과 비교하여 보면 대부분 기준이하를 나타내고 있으나 총부유분진의 경우 지하철은 신촌역이 315㎍/㎥로 권고기준 300㎍/㎥을 초과하고 있으며, 지하상가의 경우 잠실과 운동장(청계)에서 각각 385㎍/㎥ 및 339㎍/㎥로 기준을 초과하는 것으로 나타났음.

표 3.14.1 지하공간 공기오염도 현황('95 상반기)

   

구 분

  

SO2

(ppm/일)

NO2

(ppm/일)

CO

(ppm/8h)

CO2

(ppm/8h)

HCHO

(ppm)

지하공기질 기준

  

0.25

(ppm/시간)

0.15

(ppm/시간)

25

(ppm/시간)

1,000

(ppm/시간)

0.1

(ppm/일)

시 청

신 촌

사 당 동

서 울 대

경 복 궁

미아삼거리

0.015

0.018

0.018

0.014

0.013

0.018

0.041

0.061

0.056

0.056

0.057

0.057

1.7

3.0

2.2

2.0

3.0

1.2

651

586

583

495

466

499

0.014

0.018

0.019

0.012

0.015

0.008

종로 2가

명 동

잠 실

운동장(청계)

동 대 문

강 남

0.015

0.018

0.038

0.018

0.020

0.030

0.035

0.042

0.053

0.057

0.073

0.044

1.8

3.1

3.5

2.4

1.6

2.3

635

666

956

624

648

764

0.026

0.019

0.034

0.040

0.050

0.018

   

라. 각종기준

○ 표 3.14.2는 우리나라의 공중위생법상의 실내환경기준, 노동환경기준 및 외국의 기준을 나타낸 것임.

표 3.14.2 각종 실내환경기준

   

구 분

실내위생관리기준

외 국 기 준

부유분진(μg/㎥)

일산화탄소(ppm)

150

10

150(일본빌딩위생관리법, 노동안전위생법)

10(일본빌딩위생관리법, 노동안전위생법)

20(일본학교위생기준)

9(WHO기준, 8시간), 35(WHO기준, 1시간)

이산화탄소(ppm)

1,000

1,000(일본건축기준법, 빌딩, 노동안전)

1,500(일본학교환경기준)

920(WHO기준, 8시간)

온 도

상대습도

기 류

조 명

낙하세균

이산화질소

(ppm)

17∼18℃유지

40∼70%

0.5m/sec

100 lux이상유지

-

-

10∼30℃(일본학교환경기준)

30∼80%(일본학교환경기준)

-

200 lux이상(일본학교환경기준)

평균 30개 이하

0.21(유럽기준)

5(일본산업위생허용농도)

아황산가스

(ppm)

-

5( " )

0.04(일본공해대책기본법)

포름알데히드

(ppm)

-

0.1(유럽기준)

2(일본산업위생허용농도)

   

표 3.14.2. (계속)

   

구 분

실내위생관리기준

외 국 기 준

석 면

(개/cc)

라 돈

(Bq/㎥)

-

-

0.01(미국석면긴급대책법)

2(일본산업위생학회)

100(WHO유럽 신축주거)

70(스웨덴 신축주거)

100(일본 과기청고시)

3700(미국광산위생국)

   

마. 영향

(1) 실내오염의 인체에 대한 영향은 단순히 눈을 자극하는 증상으로부터 혈중의 산소분자에 대한 오염기체의 복잡한 결합까지 광범위하며 각 개인에 따라 차이가 많음.

(2) 지하공간에서 생활하는 사람들에게 나타날 수 있는 대표적인 피해로는 기침, 가래, 코자극, 두통, 숨이 가쁨, 눈 자극 등과 같은 증상이 생길 수 있음.

(3) 특히 감기에 걸렸을 시 회복되는 기간이 상당히 길어질 수 있다는 것임.

(4) 표 3.14.3은 주요 실내공기오염물질의 발생원과 인체에 미치는 영향을 나타낸 것임.

표 3.14.3 실내공기 오염물질의 발생원과 인체영향

   

오 염 물 질

발 생 원

인 체 영 향

연소가스

흡연가스

포름알데히드

석면

라돈

미생물

   

기타(오존, 납등)

취사 및 난방, 가스난로, 석유난로

흡연

단열재, 실내가구칠, 흡연, 접착재

내화성건축자재, 단열재, 가정용 품, 전기제품

건축자재(콘크리트, 시멘트, 진흙, 벽돌 등) 동굴, 천연가스

가습기, 냉장고, 공기정화기, 살포 제, 플라스틱 제품, 페인트, 악취 제거제

복사기기, 생활용품, 연소기기

두통, 현기증, 구토, 시각장해,

기관지염, 폐기능저하

초조감, 폐질환, 폐암

눈, 코 등의 자극, 기침, 두통, 정 서적 불안, 기억력상실

피부질환, 호흡기질환, 석면증 폐 암, 폐질환

폐암

호흡기질환, 알레르기성질환, 홍역, 천연두

기침, 두통, 천식, 알레르기성질환

   

바. 문제점

(1) 국내에서 실내공기오염이 사회문제로 대두된 것에 비하여 이에 관한 자료 및 연구조사가 미 비한 실정으로 보건복지부에서 정한 공중위생법에 일산화탄소, 이산화탄소, 분진 등에 대한 기준치가 설정되어 있을 뿐이고 환경부에서는 지하환경에 관한 권고지침서가 있을 뿐임. (2) 각종 오염물질로 인한 인체피해를 최소화하기 위한 예방대책으로 실내오염물질에 관한 기준 치 설정이 이루어져야 하나 이에 대한 대책이 미비한 실정임.

(3) 실내공기오염에 관한 공공정책 및 연구를 관장할 행정기관이 없어 독립적으로 행정처리 등을 수행할 기관이 없음.

사. 지하공간의 공기오염 관리 현황 및 대책

(1) 국내

표 3.14.4 국내 관리현황

   

규 제 법

대 상 공 간

관 리 기 준

보건복지부

(공중위생법)

사무용 건축물 및 지하상가(2,000 ㎡ 이상) 등

먼지 등 7개항목(CO, CO2, 온도, 습도, 기류, 조명)

건설교통부

(건축법)

(주차장법)

지하상가, 관람 및 집회시설(1,000 ㎡이상) 등

지하주차장

먼지 등 5개항목

(CO, CO2, 습도, 기류)

CO 50ppm/8시간

노 동 부

(산업안전보건법)

사 업 장

유해화학물질 등

   

(2) 국외

표 3.14.5 국외 관리현황

   

구 분

미 국

일 본

관리현황

o 노동부 안전보건국(Occupational and

Health Administration : OSHA)

- 작업장내 공기오염도에 대한 허 용기준 제정

- 지하주차장, 상가 등 지하공간에 대한 공기오염도규제 미설정

o 환경청 실내환경권고기준(석면) : 0.01개/cc

   

o 건설성 : 건축기준법

- 지하시설에 대한 건축규제 및 환기규제

o 위생성 : 건축물에 있어서의 위 생적환경의 확보에 관한 법률

- 국내 공중위생법 규제기준과 같음

o 노동성 : 지하상가 노동대책 요령

- 지하상가의 작업환경 및 노동 조건에 대한 사항 규정

   

(3) 대책

(가) 단기대책

1) 지하에 오염된 공기를 외부로 직접 배출하고 신선한 공기를 공급하는 효과적인 환기시설의 설치가 필요하고 철저한 청소와 환기시설의 가동 등 운영면을 점검하여야 함.

2) 지하상가의 난로사용은 환기시설이 되어 있는 장소에 국한하고 환기닥트와 연결.

(나) 중·장기대책

1) 대기환경오염도가 지하공간오염과 직접적인 관계가 있으므로 대기환경규제 강화, 지하주차장의 차량주차방법과 시설을 개량하여 차량이 지하시설 내에서 장시간 가동하지 않 도록 조치.

2) 쾌적한 실내환경을 유지하기 위하여 건축가 및 건물주, 건물관리인, 건축자재 제조업자 등은 개인의 거주환경에 대한 관심과 노력이 필요하며 특수한 실내환경에 대하여 적절한 실내공기 기준치의 설정이 필요하며, 실내환경을 관장할 기관을 일원화하여 체계적인 행정이 이루어져야 함.

3) 정기적으로 상가 주민들을 대상으로 지하환경오염의 중요성을 인식시켜 주민 스스로 깨끗한 지하환경을 유지할 수 있도록 각종 홍보활동을 실시.

4) 지하상가 건설 시 건축 시공 전에 종합적인 환경계획을 세워 충분히 검토를 한 후 시공하도록 법제화하여야 할 것이며 전문인력을 배치하여 정기적인 측정조사와 환기시설 등이 정상적으로 운영이 되도록 함.

참고문헌

1. 한국 환경연구협의회, (1989), 지하공간의 공기오염 및 공기중 미량유해물질에 관한 조사연구.

2. 환경보전협회, (1992), 환경보전.

3. 박양원, (1976), 현대공중보건학.

4. 산업안전과학협의회, (1993), 산업안전관계법규

   

작성자 : 대기화학과 환경연구관 박철진(공학박사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-14.htm>

   

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

악취  (0) 2016.06.25
실내공기오염  (0) 2016.06.24
시정장애  (0) 2016.06.24
산성비  (0) 2016.06.24
광화학 스모그  (0) 2016.06.24

   

   

13. 시정장애

가. 시정

(1) 시정이란

시정이란 주간에 정상적인 시력을 갖고 있는 사람이 육안으로 하늘을 배경으로 검정색 목표물의 경계를 식별할 수 있는 최대거리를 의미한다.

o 시정은 물리적인 복합현상이며 개인의 감지와 해석능력, 광원의 특성 및 투과율에 좌우되는 주관적인 것으로 관측자의 시력과 물체와 주변공간의 대조(contrast)에 의해 제한을 받음.

(2) 겉보기 대조

관측자에게 나타나는 겉보기 대조(apparent contrast, CR)는 입자에 의한 산란때문에 고유대조보다 적으며 다음 식으로 나타낼 수 있다.

CR = BR- B'R / B'R

(가) 여기서 BR과 B'R은 각각 물체와 주위배경의 관찰된 휘도임.

(나) 고유대조란 주위배경에 대한 물체의 상대적인 밝기(휘도)를 나타냄.

(다) 겉보기대조는 관측자와 물체간에 존재하는 입자의 산란을 무시할 경우 고유대조와 같게 됨.

나. 시정관측

(1) 목측에 의해 관측되는 시정(Visibility)이란 "어떤 방향의 지표면부근의 하늘을 배경으로 하여 정상적인 시력을 가진 사람이 어떤 목표물의 형태나 윤곽을 식별할 수 있는 최대 수평거리"이며 목표물은 뚜렷이 빛나는 밝은 물체가 아니어야 한다.

o 시정 관측시에 부근의 굴뚝에서 나오는 연기나 적은 규모의 먼지 등은 그것이 인위적인 현 상이든 자연적인 현상이든 관측자의 위치를 다소 변경하므로써 그 배후에 있는 목표물을 볼 수 있을 정도의 것은 시정장애 현상으로 간주하지 않음.

(2) 기상청에서는 동심원상에 많은 목표물을 설정하여 그 방향과 거리를 측정한 후, 각 목표물이 확인되는 정도를 살펴서 시정을 측정하고 있다.

(가) 목표물을 뚜렷이 확인한다는 것은 목표물의 형태나 윤곽을 식별하는 것, 즉 건물이면 건물로 수목이면 수목으로 식별할 수 있는 것을 뜻함.

(나) 시정이 방향에 따라 다를 때에는 최소시정을 택함.

(다) 시정관측 목표물은 하늘을 배경으로 하는 검정색 또는 검정색에 가까운 물체를 선택하며 지물을 배경으로 하는 목표물을 선정할 때에는 지평선 부근의 하늘과 같은 밝기의 배경이 되는 것을 선정함.

(라) 야간의 시정관측은 "주간과 같은 밝기라고 가정하여 목표물의 형태나 윤곽을 식별할 수 있는 최대의 거리"이므로 야간의 어두움에 관계없이 주간의 시정과 같은 대기혼탁정도를 표시함.

(3) 서울의 시정은 서울 서대문구에 위치한 서울 측후소에서 3시간 간격으로 측정하고 있다.

(가) 목측방법은 관측자의 숙련도와 같은 주관적인 요소와 목표물의 특성, 기상조건 등의 영향을 많이 받는다는 단점이 있음.

(나) 시정 5km 이상에는 1km 단위로 관측하고 5km 미만에서는 0.1km 단위로 관측함.

(4) 시정을 측정하는 장치는 원리상 총소멸계수(bext)나 산란계수(bsp)를 측정하여 시정으로 환산하는 방식과 목표물과 그 주변의 대조를 측정하여 시정을 계산하는 방법의 두가지로 분류된다.

o Nephelometer, transmissiometer, scatter meter 등은 측정원리상 전자에 속하고 telephotometer, photometer 등은 후자에 속함.

다. 시정장애현상

시정장애를 일으키는 현상 및 원인으로는 안개(Fog), 박무(Mist), 연무(Haze), 연기(Smoke), 스모그(Smog), 먼지(Dust) 및 눈, 비, 안개비(Drizzle) 등이 있다.

o 대기중 시정감소현상을 유발하는 과정은 크게 자연적인 현상과 오염물질의 증가현상에 의 해 기인되는 두가지로 분류됨

o 자연적인 현상에 의한 시정감소현상은 광범위한 기상조건의 변화에 의해 대기중 부유하는 수증기 물방울의 증가로 발생되는 것으로 안개나 박무현상과 같은 기상현상이 있음.

(1) 안개 등에 의한 시정장애현상

안개는 지상에서 발생하는 구름이며 안개에 대한 국제적 정의는 작은 물방울이나 빙정으로 구성된 구름이 관측자의 수평시정을 1000m 미만으로 제한할 때를 일반적으로 안개라고 한다.

o 1955년이래 1990년까지 36년간 김포국제공항에서 관측된 모든 시정장애 현상 가운데 안개 발생에 대한 조사분석 결과는 다음 표 3.13.1과 같음.

표 3.13.1 월별 안개 평균발생일수

   

계 급

1

2

3

4

5

6

7

8

9

10

11

12

1000m 미 만

6.1

3.1

4.4

3.9

3.4

3.8

5.5

5.1

5.7

8.3

6.1

5.8

62.2

800m 미 만

4.6

3.2

3.4

3.2

2.6

3.0

4.2

4.1

4.7

7.3

5.0

4.3

49.4

   

(출처 : 김포공항측후소, 1991)

(가) 년도별 안개조사

1000m 미만의 안개발생일수를 조사한 결과 36년간(1955-1990) 총 2240일로서 년평균 62일로 나타났음.

1) 1990년이 139일로 조사기간중 가장 많이 발생했으며 1989년 80일, 1981년이 79일이었고 70일이상 발생한 년수는 10년으로 기록되었음.

2) 조사기간중 1988년은 39일로 안개발생이 가장 적었음.

(나) 계절별 안개일수

통계기간중 안개 총발생일수 2,240일을 계절별로 분석한 결과 가을철(9월∼11월)이 722일 평균 20일로 가장 많고 겨울철(12∼2월)이 573일(평균 16일), 여름철(6∼8월)이 522일(평균 15일)로 나타났으며 봄철(3∼5월)이 제일 적은 423일(평균 12일)이었다.

(다) 월별 안개일수

36년간의 안개 총발생일수를 월별로 보면 10월이 297일로 월평균 8.3일, 11월과 1월이 219일로 월평균 6.1일, 12월이 207일로서 월평균 5.8일, 9월이 206일로 월평균 5.7일 순위였으며, 안개가 가장 적었던 달은 5월의 123일로서 월평균 3.4일이었다.

o 월별 안개발생시간은 10월이 가장 긴 1102시간 25분으로 기록되었고, 다음은 11월, 12월, 1월 순위였으며, 안개발생 시간이 가장 짧았던 달은 5월로서 333시간 47분으로 나타나 10 월의 1/4정도였음.

(라) 시간대별 안개 조사분석

총발생시간 7332시간 34분중 월별로 다소의 차이는 있으나 안개가 자주 끼는 시간대는 3시∼10시 사이로 안개가 낀 시간이 2028시간 45분으로서 주로 일출시간을 전후하여 안개가 끼는 것으로 나타났으며, 14시부터 20시 사이에는 60시간 미만으로 안개가 거의 발생하지 않는 시간대로 나타났다.

(2) 오염물질의 증가로 인한 시정감소현상

(가) 자동차나 연료의 연소과정에서 대기중에 배출된 먼지와 가스상물질의 산화과정에 의해 생성된 미세입자(2 마이크로미터 이하)의 농도증가로 인하여 시정감소현상이 발생됨.

(나) 대기중에서 가스상물질의 산화반응에 의해 생성되는 미세입자에 의한 시정감소현상은 광화학반응이 주도적으로 일어나는 L.A형 스모그와 습식산화반응이 주도적으로 일어나는 런던형 스모그로 대별되며 우리나라의 경우 일부 하절기를 제외하고는 습식산화반응에 의한 시정감소가 주로 발생됨.

(다) 대기중 상대습도의 상승이 중요한 인자중의 하나로 작용하며 혹은 자연적 기상조건에 의하여 형성된 안개현상이 오염물질과 반응하여 2차적인 시정감소현상으로 변환되기도 함.

라. 시정장애현상의 원인과 소멸계수

(1) 시정장애현상 원인과 영향인자

시정장애현상은 기체분자와 분진이 가시파장의 빛을 흡수 또는 산란시킴으로서 대기를 혼탁하게 하고 색조 현상을 일으켜 시정을 악화시키는 현상을 말하며 대도시 시정거리 감소의 주원인은 빛의 산란효과에 기인됨.

(가) 시정악화를 야기시키는 영향인자들은 기상요소와 대기중의 오염물질로 대별되며 이들 인자들은 독립적으로 혹은 상호관련성을 가지며 시정에 악영향을 미치게 된다. 기온, 습도 및 풍속은 대기혼합층에 영향을 주어 결과적으로 시정에 영향을 주는 인자가 됨.

(나) 대기중의 미세입자에 의한 빛의 흡수와 산란효과를 합친 시정감소효과는 습도 증가에 의한 영향과 함께 시정감소 원인의 95% 이상을 차지하고 있으며 습도가 증가하면 대기중에서의 미세입자 생성속도가 빨라지고 입자의 흡습성에 의해서 입자 크기가 커지므로써 시정장애 현상이 가속화됨.

(다) 시정장애 현상을 유발하는 주요 미세입자들은 탄소입자(25.7%), 황산염입자(18.7%), 질산염 입자(14.3%), 유기탄소화합물(10.9%), 기타 여러가지 금속산화물(25.0%) 등으로 구성되어 있는 것으로 보고되고 있으며 이 중 탄소입자는 대부분 자동차의 배출가스로부터 배출되는 것이고, 황산염입자, 질산염입자, 유기탄소화합물 등은 연료의 연소과정에서 배출되는 아황산가스, 질소산화물, 탄화수소가스 등이 대기중에서 반응하여 생성되어진 2차 오염물질들이라고 추정됨.

(2) 빛 소멸계수(Light Extinction Coefficient)

광원으로 부터 광도 Io로 나온 광선은 빛이 통과하는 대기중의 가스와 입자에 의하여 산란, 흡수되므로써 약해지며 거리 X만큼 지난 후의 광도 I는 Lambert-Beer법칙에 의해 다음과 같이 계산한다.

I = Io exp (-bext ㆍX)

o bext는 빛의 소멸계수로써 공기 중 가스와 입자에 의해 흡수 또는 산란된 소멸계수의 합을 나타내며, 단위공기부피당 빛 소멸물질의 흡수 혹은 산란유효단면적과 같음.

o 대기중의 기체분자나 부유입자상 물질에 의한 빛의 산란과 흡수는 입자의 크기, 모양, 산란 각, 굴절율, 성분 및 입사광의 파장 등에 의해 영향을 받음.

o 입자가 빛과 상호작용할 때 이들이 받는 전자기적 에너지는 여러방향으로 재복사되는데 이 러한 현상을 산란이라고 함.

o 한편, 입사광이 입자에 의해 열이나 화학반응에너지 등으로 변환되어 제거될때 이를 흡수라고 함.

o 이러한 소멸계수는 다음과 같은 여러 항으로 구성된다.

bext = bag + bag + bsp + bap

(가) 기체에 의한 산란계수 (bsp)

number density)에 비례하므로 고도가 높아기체에 의한 빛의 산란은 Rayleigh산란에 의해 설명되는데 이 계수는 분자수 밀도(molecular 지면 이 계수는 작아짐.

(나) 기체에 의한 흡수계수(bag)

가시광을 흡수하는 대기중의 중요한 가스성분은 NO2이며 가스의 흡수량이 총 소멸량에 미치는 영향은 대부분의 경우 크지 않으나 굴뚝에서 나오는 배연이나 도시대기중에서 NO2농도가 높을 때는 bag를 고려해야 됨. Hodkinson의 이론에 의하면 20℃, 1기압에서 550nm 파장의 광선에 대해 bag는 3.3 ×10-4m-1/NO2(ppm) 또는 0.17 ×10-6m-1/?g-NO2/m3임.

(다) 입자에 의한 흡수계수 (bap)

도심지역에서 입자에 의한 빛의 흡수는 주로 원소탄소(elemental carbon)에 의해 일어나며 원소탄소는 1차 입자로 배출원에서 직접 배출되며 물리, 화학적 변환에 의해 생성되지 않음.

○ 탄소에 의한 빛의 흡수계수 bap는 opal glass technique에 의해 직접 결정하는 방법과 원 소탄소질량농도와 원소탄소에 대힌 빛 흡수효율간의 관계를 이용하여 결정하는 방법과 그리고 Integrating Plate Method 등이 있음.

(라) 입자에 의한 산란계수 (bsp)

입자에 의한 빛의 산란은 입자크기에 따라 Rayleigh산란과 Mie산란 등 몇가지로 나누어 설명되고 입자의 크기가 입사광의 파장보다 훨씬 작을 때 즉, 입경이 0.05 ?m보다 작은 입자들에 대해서는 Rayleigh산란이 적용되며, 기체에 의한 산란이 이에 적용된다.

o 입자의 입경이 입사광의 파장과 비슷하거나 그보다 큰 경우 즉, 입경이 0.05 ?m이상되는 입자에 의한 가시광선의 산란은 Mie이론으로 설명함.

마. 대기오염도 및 시정감소현상 현황

(1) 저황유 및 LNG의 지속적인 확대공급으로 아황산가스와 TSP(먼지)농도는 매년 감소하고 있으나, 급증하고 있는 자동차등의 영향으로 오존과 이산화질소 농도는 개선되지 않고 있으며, 특히 경유자동차에서 배출되는 미세입자(카본물질)의 영향으로 아황산가스나 TSP(먼지)농도의 감소와 관계없이 시정감소현상이 발생될 수 있다.

(2) 지난 10년간('84∼'93)의 시정관측자료를 분석하여 본 결과 평균시정거리는 9.5 km이고 3.3 km이하의 시정발생율은 10 %로 약 37일간이었으며 10년동안 시정의 뚜렷한 변화추세가 없는 것으로 나타났다.

(3) 자연적인 기상조건에서 발생된 안개현상과 습도의 영향을 배제하기 위하여 상대습도 70%미만일 때 시정 4 km이하의 발생일은 약간 증가추세를 보이고 있다.

(4) 시정장애현상은 안개(fog), 황사현상과 같이 자연적인 원인에 의한 것과 스모그,연무, 박무 등과 같이 인위적인 원인에 의한 것으로 분류할 수가 있으며 안개도 대기오염이 심할 경우에는 비균질핵형성(heterogeneous nucleation)의 기여도 증가에 따라 그 정도가 심해질 수가 있다.

(가) 인위적인 원인에 의한 시정장애현상은 주로 부유분진(suspended particles) 또는 에어로졸 (aerosol)이라 불리는 대기중에 떠있는 미세입자, 특히 0.1∼2 ㎛ 크기의 미세 입자들이 주원인으로 알려져 있으며 이들 입자들은 대부분 대기중에서의 1차 오염물질들(가스상물질)이 반응, 응축, 응집 등의 과정을 통하여 생성, 성장하기 때문에 2차 에어로졸이라고 불림.

(나) 2차 에어로졸의 성장, 생성 및 여러 특성(크기, 성분, 농도)은 1차 오염물질들인 기체상의 SO2, NOx, CO, O3, 총탄화수소(THC) 등과 입자상물질(TSP)의 농도와 여러 기상조건(온도, 습도, 풍향, 풍속, 일사량, 혼합고)의 영향을 받게 됨.

(다) 2차 에어로졸의 입경분포(size distribution), 화학성분, 수분함량 등의 여러 인자들이 시정장애현상에 영향을 미치므로 시정장애현상은 어느 한가지 인자만이 주 원인이라고 할 수 없는 복합적인 현상임.

바. 시정장애현상에 대한 연구사례

(1) 국립환경연구원 연구사례

국립환경연구원에서는 9년전('86년)에도 이러한 미세입자들의 구성성분에 대하여 조사한 바 있으며, '86년에 비하여 '94년 조사결과는 미세입자중 황산이온의 구성비율이 약 30% 감소하였고 질산이온의 경우는 구성비율이 1% 미만에서 약 14%로 증가한 것으로 나타나 수도권지역의 대기오염 양상이 변화하고 있음이 파악되었고 표 3.13.2에 변화양상을 나타내었다.

o 황산이온이 감소하고 질산이온이 상대적으로 증가하는 현상의 이유로는 지난 10여년간 수도권지역에서의 연료중 황함량의 규제와 청정연료 대체 등의 정책으로 황산화물의 배 출량은 감소하고 있으나 자동차의 급격한 증가로 인하여 질소산화물의 배출량이 증가되 었기 때문인 것으로 추정되었고 표 3.13.3에 시정감소 원인물질의 기여형태와 주요 발생 원을 나타내었음.

표 3.13.2 시정감소 원인물질별 기여율의 변화 양상(대상지역 : 서울)

   

원 인 물 질

기 여 율 (%)

  

  

'86 결 과

'94 결 과

황 산 염 입 자

질 산 염 입 자

탄 소 입 자

유기탄소 입 자

잔여미세 입 자

이 산 화 질 소

대 기 중 산 란

49.5

0.8

17.3

11.6

11.8

3.2

5.8

18.7

14.3

25.7

10.9

25.0

0.4

5.0

   

(출처 : 이민희, 1987., 국립환경연구원, 1994)

표 3.13.3 시정감소 원인물질의 기여형태와 주요 발생원

   

원 인 물 질

기 여 형 태

비 고

유기탄소물질

입자상탄소물질

황산염입자

질산염입자

수분

토양, 해염입자

이산화질소

순수대기

산란(입자)

산란,흡수(입자)

산란(입자)

산란(입자)

산란(입자)

산란(입자)

흡수(가스)

산란(가스)

일차배출원(자동차, 연소)

대기중반응생성(휘발성유기화합물)

일차배출원(자동차, 연소)

대기중 반응생성

(SO2 : 난방,산업,발전 등)

대기증 반응생성

(NOX : 자동차,난방,산업,발전 등)

자연 증발, 일부 연소과정

자연 발생

배출원, 대기중 산화

   

(2) 미국 덴버지역 연구사례

(가) 주요원인 물질 : 질소산화물과 미세입자상물질 (대기중 가스상물질의 반응에 의해 생성된 2 차생성입자)로 주요성분은 황산염, 질산염, 탄소성분임.

(나) 기상조건 : 기온역전현상으로 확산이 용이치 못하고 상대습도가 증가시 시정악화현상이 가속화 됨.

표 3.13.4 미국 덴버지역('78년)의 원인물질별 기여율

   

원 인 물 질

기여율(%)

황 산 염

탄 소 입 자

유 기 탄 소

질 산 염

이산화질소

기 타

20.2

35.7

12.5

17.2

5.7

6.6

   

(출처 : Grobliicki, 1981)

   

참고문헌

1. 이민희, 한의정, 한진석 등, (1987), 대기중 입자상 물질의 생성 및 동태에 관한 연구, 국립환경 연구원.

2. Appel, B.R., et. al., (1985), Visibility as related to atomospheric aerosol constituents, Atm. Env., 19, 1525.

3. Grobliicki, P.J., Woolff G. T., and Countess, R. J., (1981), Visibility-reducing Species in the Denver, Brown Cloud-I, Atmos. Environ., 15, 2473.

4. Koschmieder,H., (1924), Beitr. Phys. freien Atm. 12,33.

5. D.W. Ely et al., (1991, The establishment of the Denever visibility standard, 84th annual meeting and exhibition, AWMA.

6. S.K. Fiedlander, (1977), Smoke, Dust and Haze, John Wiley & Sons.

7. 국립환경연구원, (1984), 수도권 지역의 시정장애현상규명을 위한 조사연구(I).

8. 국립환경연구원, (1995), 수도권 지역의 시정장애현상규명을 위한 조사연구(II).

9. 김포공항측후소, (1991), 김포국제공항의 안개.

작성자 : 대기화학과장 환경연구관 한진석(공학박사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-13.htm>

   

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

실내공기오염  (0) 2016.06.24
실내공기오염  (0) 2016.06.24
산성비  (0) 2016.06.24
광화학 스모그  (0) 2016.06.24
수은  (0) 2016.06.24

   

12. 산성비

가. 산성비

(1) 정의

(가) 산성비(acid precipitation 혹은 acid rain)는 대기중에 대기오염물질 중 가스상 물질들이 구름에 유입되고 물방울을 형성하는 과정에서 화학반응에 의해 황산, 질산, 염산 등의 물질이 생성되어 빗물이 산성화되어 발생된다.

(나) 순수한 물은 pH가 7로 중성이지만 빗물은 대기 중에 녹아있는 이산화탄소(0.033%(330ppm))로 인해 탄산용액이 되어 pH가 5.6 정도인 약산이다.

(다) 그러나 실제로 선진국에서는 자연적으로 발생하는 물질들로 인한 효과를 고려하여 대략 pH가 5.0 이하일때를 산성비라고 간주하는 경우도 있다.

(2) 용어의 등장

(가) 영국의 화학자이자 기후학자인 Rober Angus Smith가 1872년 산업혁명 초기에 영국 맨 체스터 지역에 내린 산성의 빗물을 표현하기 위해 이 용어를 처음 사용하였다.

(나) 20세기에 대기화학과 분석화학의 발달로 인하여 빗물의 산성도를 pH로 표현하기 시작 하였으며 1948년 스웨덴의 Egner가 최초로 산성비 측정망을 설치·운영하였다.

(다) 1961년 스웨덴의 Svan Oden등이 지표수 측정망을 운영하여 산성비의 원인이 대기오염 물질의 장거리 이동임을 알아내고 빗물의 주요 이온과 산성도에 계절적 변화가 있음을 발표한 바 있다.

(라) 그의 주장에 근거하여 스웨덴은 1차 유엔환경회의에서 산성비에 대한 피해 영향을 제기하였으며 그 이후로 산성비는 범지구적인 관심의 대상이 되는 용어로 부각되었다.

나. 오염원

(1) 산업이 발달하고 인구가 증가함에 따라 이산화황(SO2), 질소산화물(NOx)등의 대기오염물질 이 대기중으로 다량 배출되었고, 이렇게 배출된 대기오염물질은 산성비의 원인이 된다.

(2) 발생형태와 피해의 정도는 발생원과 원인물질, 기상조건 등에 따라 각기 다르게 나타나며, 이 중에서도 특히 발생원과 원인물질에 따라 달리 나타난다.

(가) 고정발생원에 의한 오염

공장, 화력발전소 또는 사업장이나 건물 및 가정에 설치되어 있는 보일러, 소각로, 가열로 등 고정배출시설에서 발생하는 황산화물, 질소산화물, 염소가스 등에 의한 오염.

(나) 이동발생원에 의한 오염

자동차, 항공기, 기차 등의 이동배출시설에서 배출되는 황산화물, 질소산화물, 탄화수소등.

다. 생성과정

(1) 이산화황과 질소산화물

산성비의 형성은 대기중으로 이산화황(SO2)과 질소산화물(HOx 즉 NO와 NO2)등 배출됨으로써 시작된다. 이들은 대기중에서 기체상의 산화반응과 액체상의 산화반응을 거쳐 황산(H2SO4), 질산(HNO3)등으로 전환된다.

기체상 산화반응은 주로 OH에 의해서 일어나므로 광화학반응이 활발한 여름에 겨울보다 많이 일어나며 밤보다는 낮에 활발하게 일어난다.

액체상의 산화반응은 구름이나 안개 내에서 주로 일어나며 그 생성메카니즘은 다음과 같다.

(가) 기체상의 이산화황은 황산으로 변환할 때 OH가 중요한 역할을 하고 있다.

OH + SO2 + M → HOSO2 + M(M은 O2, N2 등)

HOSO + H2O →HOSO2·OH2

HOS2·OH2 + O2 → H2SO4 + H2O

(나) NO2가 오존과 함께 반응하면 질산이 생성한다.

NO2 + OH(+M) → HNO3(+M)

N2O5 + H2O → 2HNO3

NO3 + RCHO → HNO3 + RCO(R는 H 또는 CH3)

(다) NO2가 액체상에서 아래와 같은 반응으로 질산이 생성된다.

2NO2 + H2O ⇔ 2H+ + NO3_ + NO2_

NO + NO2 + H2O ⇔ 2H+ + 2NO2_

2NO2 + H2O ⇔ 2H+ +2NO3_ + NO

(2) 암모니아

(가) 암모니아가 대기중 산성가스와 반응하여 입자상 암모늄염을 형성한다

2NH3 + SO2 + 〔O〕→ (NH4)2SO4

NH3 + SO2 + 〔O〕→ (NH4)HSO4

NH3 + NOy ⇔ (NH4)NO3

NH3 + HCl ⇔ (NH4)Cl

   

  • 원본보기

       

    출처: <http://tip.daum.net/question/62836446>

       

       

    그림 3.12.1 산성비의 생성메카니즘

    라. 오염상태

    (1) 우리나라 주요 도시의 연도별 강우산도

    (가) 1998년 기준으로 환경부에서 관리하는 대기오염 측정소는 101개소, 지방자치단체에서 관리하고 있는 측정소는 41개소이다. 이 중 산성비 측정은 '83년 8월부터 시작하여 현재 48개 시·군에서 자동측정소 95개와 수동측정소 9개를 운영하고 있다.

    (나) '86년부터 '97년도의 연도별 강우산도를 살펴보면 서울의 경우 pH값이 5.6이하인 경우도 있으나 정도가 심하지 않고 전반적으로 부산을 제외하고는 대부분의 도시의 강우산도가 pH가5.6보다 크게 낮지 않은 것으로 나타났다.

    표 3.12.1 주요도시의 연도별 강우산도

       

연도

도시

'86

'87

'88

'89

'90

'91

'92

'93

'94

'95

'96

'97

서울

5.3

5.1

5.7

5.6

5.0

5.4

5.3

5.4

5.4

5.8

5.7

5.3

부산

5.2

5.4

5.2

5.2

5.2

5.1

5.2

5.3

5.2

5.2

5.1

5.2

대구

5.4

5.3

5.6

5.3

5.7

5.9

5.6

5.5

5.6

5.7

5.6

5.8

광주

6.1

5.8

5.7

5.7

5.9

6.1

6.2

5.8

6.0

6.2

5.9

5.9

대전

5.4

5.5

5.7

5.8

5.5

5.5

5.7

5.8

5.8

5.9

5.8

6.2

인천

5.5

5.2

6.0

5.7

5.4

5.4

5.7

5.5

5.7

5.9

5.9

5.6

울산

5.2

4.9

5.1

5.6

5.6

5.6

5.6

5.6

5.4

5.3

5.9

5.7

(출처 : 환경백서, 1998, 환경부)

(2) '98년 전국주요 도시의 월별 강우산도(표 3.12.2)

(가) '98년도부터는 이전처럼 pH값을 산술평균하지 않고 전국 주요 도시의 강수량을 고려하여 pH값을 구하였다.

(나) 월평균 pH가 4.4∼6.8의 범위로 나타났고 pH 5.0을 초과하는 도시별 월평균 강우산도는 부산 9회, 인천 8회, 대전 7회로 강우의 산도가 비교적 높았으며, 그 외에 서울 3회, 울산 3회, 광주 2회, 대구 1회의 순으로 나타났다.

(다) 월별변화를 살펴보면 겨울철보다 8월이 가장 높은 강우산도를 보이고 있는데, '98년 8월의 경우 주요 도시의 평균 강수량(593㎜)및 평균 강우일수(18일)가 다른 기간보다 매우 많았다.

(라) '98년 8월의 이러한 현상은 대기중에서 산성화를 중화시키는 먼지 등이 빗물에 제거되는 세정효과로 인하여 타 기간보다 높은 산도를 나타낸 것으로 판단된다.

(3) 강우에 의한 오염물질의 농도변화 (표 3.12.3)

(가) 계절현상이 뚜렷한 우리나라에는 오염물질의 농도분포도가 계절에 따라 다르게 나타나게 되는데, 특히 장마기간이 포함되는 7월중의 대기오염도가 현저하게 감소하게 된다.

(나) '99년 6월과 7월의 서울지역을 대상으로 강우가 있었던 날과 평일의 평균오염농도 비교분석하여 보면 6,7월 강우일 오염물질 평균농도가 평일의 농도에 비하여 SO2, O3, TSP, PM10이 각각 17%, 35%, 20% 5% 감소함을 알 수 있다.

표 3.12.2 '98년 주요도시의 월별 강우 산도 (단위 : pH)

   

지역

기간

서 울

부 산

대 구

광 주

대 전

울 산

인 천*

'98. 1

5.1

(4.6∼7.4)

4.6

(4.1∼5.1)

6.3

(6.0∼6.5)

6.1

(5.8∼7.3)

5.1

(4.9∼6.4)

5.1

(4.8∼7.0)

6.4

(6.1∼7.1)

2

4.6

(4.0∼7.5)

4.6

(4.3∼5.1)

6.2

(6.2∼6.2)

5.8

(5.7∼7.0)

4.9

(4.3∼7.6)

5.4

(5.2∼7.8)

4.4

(3.8∼10.9)

3

5.4

(4.5∼7.6)

4.6

(3.6∼5.8)

5.9

(5.1∼6.4)

5.3

(5.3∼6.8)

5.1

(4.9∼5.3)

5.4

(4.8∼6.6)

4.8

(4.6∼7.2)

4

5.1

(4.1∼8.1)

4.7

(4.1∼7.1)

5.5

(5.1∼7.1)

5.3

(5.0∼7.4)

4.7

(4.3∼8.1)

5.0

(4.3∼7.3)

4.8

(4.4∼7.2)

5

5.0

(3.6∼7.7)

4.7

(4.0∼6.8)

5.6

(5.1∼7.2)

5.3

(5.2∼5.5)

4.7

(4.3∼7.8)

5.2

(4.9∼7.2)

4.8

(4.3∼7.1)

6

5.4

(4.2∼7.7)

4.7

(3.8∼6.2)

5.8

(4.7∼6.8)

5.8

(5.3∼6.8)

4.9

(4.5∼7.5)

4.9

(4.4∼6.6)

5.3

(4.6∼7.2)

7

5.1

(4.2∼7.5)

4.8

(4.1∼6.1)

5.4

(4.9∼7.4)

5.6

(5.2∼7.7)

4.9

(4.5∼6.6)

4.6

(4.1∼5.7)

4.8

(4.4∼7.1)

8

4.8

(3.6∼6.6)

4.5

(3.7∼6.0)

5.2

(4.8∼7.0)

4.4

(4.0∼7.1)

4.5

(4.3∼6.4)

4.6

(4.2∼5.9)

4.4

(3.9∼6.3)

9

4.7

(4.0∼8.3)

5.1

(4.7∼6.9)

5.3

(4.7∼6.7)

5.5

(5.1∼6.8)

5.5

(5.3∼6.2)

5.5

(5.0∼7.4)

4.6

(4.1∼6.6)

10

5.1

(4.4∼8.5)

4.7

(4.3∼6.5)

4.9

(4.1∼8.1)

5.2

(5.1∼7.1)

4.7

(4.3∼6.0)

5.1

(4.6∼6.3)

4.5

(3.9∼7.5)

11

5.0

(4.2∼6.9)

5.5

(5.0∼7.3)

6.1

(5.6∼6.8)

4.7

(4.5∼5.7)

5.0

(4.4∼7.2)

5.6

(5.3∼6.6)

5.1

(4.4∼6.7)

12

4.8

(4.3∼6.5)

6.6

(6.3∼7.5)

-

6.5

(6.2∼7.3)

6.8

(6.4∼7.5)

-

-

연평균

4.9

4.7

5.4

4.8

4.7

4.8

4.6

※ 강수량을 고려한 강우산도(pH) 이며, ( )는 지점별 일최고 및 최저 pH값임

* 인천의 강우산도는 인천보건환경연구원의 측정치임.

(출처 : 대기환경연보, 1999, 환경부, 국립환경연구원)

표 3.12.3 강우에 따른 서울지역의 오염물질 농도변화 비교

   

기간

오염물질

6 월

  

7 월

  

6+7 월

  

  

강우일(7)

평일(23)

강우일(15)

평일(16)

강우일(22)

평일(39)

SO2(ppb)

5

7

5

6

5

6

O3(ppb)

21

32

17

27

19

29

TSP(μg/㎥)

93

111

71

96

82

103

PM10(μg/㎥)

69

73

45

47

57

60

※주 : ( )는 해당일수.

(출처 : 8월 대기환경월보, 환경부, 국립환경연구원)

※ 참고. 강우산도(pH)를 계산하는 방법

(1) 강우산도를 계산하는 방법은 다음 ①∼④와 같이 수소이온농도와 pH를 이용하여 각각 산술적인 평균방법과 가중평균방법으로 계산하는 방법이 있다.

(2) 이 중 '98년부터 사용하는 방법(④)은 산성강하물의 전체 플럭스(Flux)량에 주안점을 둔 방법으로 기존의 pH 평균(①)에 비해 pH 값이 다소 낮게 표현되는 특징을 가지고 있다.

① pH 평균

② pH 강수 가중평균

③ [H+] 평균

④ [H+] 강수 가중평균

여기서, H+는 수소이온농도, wi강수량, n은 시료의 개수를 나타낸다.

(3) 아래 표와 같이 서울 시청측정소의 '98년 1년동안의 측정치를 통해 계산된 수치를 보면 강우산도를 수소이온농도 가중평균 방법으로 환산하여 계산하는 경우, 기존의 pH단순평균치 6.07 보다 약 0.78 낮게 나타났다. 즉 '98년 이후 자료를 평가하는데 있어 이러한 차이가 고려되어야 한다.

(계산방법에 따른 pH의 계산치)

   

방법

pH

pHw

〔H+

〔H+w

연평균 pH

6.07

5.53

5.48

5.29

   

마. 산성비에 의한 영향

(1) 토양과 물에 미치는 영향

(가) 토양의 산성화 및 영양분의 용출로 인하여 산림피해가 일어나며 유기물 분해 호흡 효소활성 등을 격감시킨다고 알려졌다.

(나) 토양이나 물의 pH가 낮아지면 인산이온의 용출이 어려워 알루미늄, 망간이온이 용해하기 쉬워지고, 산성토양은 생물이 필요로 하는 물질을 결핍시키고 유해물질을 과잉 축적된다.

(다) 호소수 등이 산성화에 의해 어패류의 감소와 중금속 용출에 의한 오염이 발생한다.

(라) 미국 뉴욕주에 있는 한 호수의 pH가 6.6∼7.2이었던 것이 점차 3.9∼5.8로 떨어져 물고기의 75%가 피해를 입었고 카나다의 온다리오주의 많은 호수에서도 pH4.5가 되어 물고기와 플랑 크톤의 생육이 곤란해졌다는 보고가 있다.

(마) 북구주에서는 1960년대 후반에 있어 pH 4∼5의 우수에 의해 산림의 성장이 2∼7% 감소하고 산성화에 의해 호소수의 pH가 저하되어 많은 어류가 사멸하였다고 함.

(바) 스웨덴에서도 곰팡이류 균사가 호소바닥에 널리 퍼졌고 노르웨이에서도 산성화에 의해 금 속류가 용출되어 물속에 알루미늄이온 농도가 높아지는 등 피해가 있다는 많은 보고가 있다.

(2) 식물에 미치는 영향

(가) 식물의 광합성 작용을 억제하여 엽록소와 잎조직이 파괴되었다.

(나) 서독에서는 전 산림면적의 절반이상이 피해가 나타나 수목에 대한 피해만도 1년에 800만$, 농작물피해가 600만$이나 되는 것으로 알려져 있다.

(3) 유적 및 건축물 등에 미치는 영향

(가) 대리석,청동상, 시멘트 건축물을 부식시키거나 철교와 같은 금속 구조물을 녹이고 있다.

(나) 서독의 Cologne 성당, 런던의 Lincoln의 새김글씨 및 아름다운 동상이 산성비에 의해 육안으로 알아보기 힘들 정도로 사라져가고 있다.

(4) 산성안개의 영향

(가) 산성비와 동일한 현상이나 안개는 지표면 가까이 형성되는 미세한 입자로서 수분량이 적기 때문에 오염물질을 다량 함유할 가능성이 크며 체류시간이 길어 산성비보다 생태계에 미치는 영향은 큰 것으로 알려져 있다.

(나) 외국에서는 안개발생의 기회가 적기 때문에 산성안개에 대한 연구는 해안이나 산악지대를 대상으로 연구를 수행하고 있다.

바. 문제점

(1) 우리나라를 포함한 동북아지역 국가들의 급속한 산업화는 국지적인 대기오염을 심화시키며, 동시에 대기오염물질이 장거리 이동되어 인접국가와의 환경오염문제를 야기시킬 염려가 있음

(2) 특히 산성비 현상은 배출원으로부터 수 천㎞ 떨어진 곳에까지 미치는 것으로 알려져 산성비 문제 해결을 위해서는 국제적인 협력이 무엇보다 필요하다

(3) 인접국가들의 도움없이는 아무런 효과를 거둘 수 없는 것이 산성비 문제 해결의 어려운 과 제이며 산성비 감시를 위한 국제적인 측정망 구축, 효율적인 관리와 운영, 그리고 산성비에 대한 정확하고 정밀한 자료를 확보하는 것이 문제점을 해결하기 위해서는 중요하다.

사. 대응책

(1) 미국과 캐나다.

(가) 미국과 캐나다간에는 1970년대에 산성비 원인물질의 국가간 이동을 둘러싼 이른바 산성비 논쟁이 시작되어 산성비에 대한 연구가 집중적으로 이루어졌다.

(나) 미국은 자국내 발전시설에서 발생하는 산성비 원인물질을 줄이기 위하여 1990년에 대기정화법을 수정하여 산성비 프로그램이라는 새로운 제도를 도입하기도 하였다.

(다) 캐나다는 1983년 환경성과 온타리오주 등 8개주는 이산화황 배출량 50% 삭감을 표명, 미국에도 대폭삭감을 요구하였고 1994년도 황발생량을 1980년도 발생량보다 40%정도 삭감하고 습성황산염강하량 목표치를 20kg/ha·년으로 정하였다.

(2) 영국

(가) 석탄의존도가 높아 이산화황 배출량을 조기에 대폭 삭감은 곤란하나 점진적으로 추진하고 있다.

(나) 1987년 발표된 산성우 대책은 금후 10년간 14% 삭감을 목표로 정하였다.

(3) 독일

(가) 1974년부터 82년까지 이산화황 배출량을 17% 삭감토록 하였다.

(나) 1983년 고정발생원 대책(탈황장치 설치)을 강화하여 향후 10년간 이산화황 배출량을 50% 삭감토록 하였다.

(4) 프랑스

1986년 종합적 대기오염대책을 발표하여 신설보일러에 탈황장치를 설치토록 하며, 1988∼1989년에 4개 석탄화력발전소에 탈황장치를 설치하였다.

(5) 중국

(가) 1979년에는 환경보전법을 제정, 신규공장을 건설하는 경우 오염방지 규제를 하였다.

(나) 중국내의 대기오염물질 배출량조사 및 산성비와 장거리이동에 관한 연구 진행하고 있다.

(6) 일본

(가) 엄격한 대기오염방지대책으로 최근 이산화황 농도가 많이 감소되었으나 질소산화물농도 는 상승하여 탈질장치를 설치하였다.

(나) 환경청은 1988년부터 5년간 제2차 산성우 대책으로서 만성적 피해의 실태해명과 오염물질 의 중거리·장거리수송 모델에 대한 조사를 수행하고 있다.

(7) 한국

(가) 화석연료의 사용을 줄이고 청정연료 및 저유황유 사용을 확대하고 있다.

(나) 전국적인 산성비 실태를 파악하기 위하여 강우중의 수소이온농도지수(pH)를 측정하여 현재 산성우 측정망 운영하고 있다.

(다) 국가간의 산성비, 해양오염 등 동북아지역의 환경현안을 해결하기 위한 제1차 한·중·일 환경장관회의가 1999년 서울에서 열려 환경협력의 중요성을 제고하였다.

(라) 2000년부터는 대기중으로부터의 오염물질의 건성침착량 및 강우·강설 등에 의한 오염물질의 습성 침착량을 파악하기 위하여 산성강하물 측정망을 운영을 계획하고 있다.

(마) 대기오염물질 장거리 이동과 산성강하물 조사사업을 일원화된 장기적인 계획아래서 일관성 있게 추진하기 위하여 산성강하물 국가 모니터링 계획을 추진하고 있다..

참고문헌

1. 환경부, 국립환경연구원, 1999, 1,2,3,4,5,6,7,8월 대기환경월보.

2. 환경부, 국립환경연구원, 1999, 대기환경연보.

3. 환경부, 1998, 환경백서.

4. 환경부, 2000년대 대기오염측정망 기본계획, 1999.

5. 환경부, 과학기술처, G7사업보고서. 산성비 감시 및 예측 기술 개발, 1997.

6. 국립환경연구원, 대기오염과 산성비에 의한 피해조사 및 평가에 관한 연구 (Ⅰ), 1991.

7. 국립환경연구원, 대기오염과 산성비에 의한 피해조사 및 평가에 관한 연구 (Ⅱ), 1992.

8. 국립환경연구원, 대기오염과 산성비에 의한 피해조사 및 평가에 관한 연구 (Ⅲ), 1993.

9. 권우택 7인, 동화기술, 산성비 조사법, 1996.

10. 이보경, 연세대 박사논문, 한반도 강수의 화학조성과 주요이온성분의 습성강하량,

11. ()コルファ―綠化促進協力會, (1991), 酸性雨 -生態系にあたえる影響-.

12. GWYNETH HOWELLS, 1990, ACID RAIN AND ACID WATERS

   

작성자 : 대기화학과 환경연구사 노혜란(공학석사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-12.htm>

   

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

실내공기오염  (0) 2016.06.24
시정장애  (0) 2016.06.24
광화학 스모그  (0) 2016.06.24
수은  (0) 2016.06.24
휘발성유기화합물  (0) 2016.06.24

   

   

11. 광화학스모그

가. 스모그(smog)

(1) 스모그(Smog)는 연기(Smoke)와 안개(Fog)라는 용어가 합쳐져 만들어진 말로 안개가 끼어있는 대기중에서 공장이나 건물의 굴뚝에서 나오는 연기가 합쳐져서 하늘이 뿌옇게 보이는 현상을 지칭하여 사용되기 시작하였다.

(2) 스모그에는 주로 공장 및 빌딩의 연소시설이나 일반 가정난방시설 등에서 배출되는 아황산가스, 매연과 같이 직접 굴뚝에서 나오는 오염물질에 의하여 발생되는 소위 런던형 스모그와 주로 자동차 배출가스에서 많이 나오는 질소산화물, 탄화수소등이 햇빛(자외선)과 작용하여 오존, 알데히드, 팬(PAN;peroxyacetylnitrate)등과 같은 여러가지 산화성 물질(옥시단트)을 생성하여 맑은 날에도 안개가 낀 것과 같은 상태의 로스엔젤리스형 스모그로 구분하고 있으며 로스엔젤리스형 스모그를 일명 광화학스모그라고 한다.

나. 오염사례

(1) 로스엔젤레스 스모그

1940년경 미국의 로스엔젤레스 지역에서 처음 발생하여 식물에 피해를 주고 1950년경에는 사람에게도 큰 피해를 나타냈던 유명한 사건임.

(가) 1954년부터 로스앤젤레스의 거의 대부분의 시민이 눈, 코, 기도, 폐 등의 점막의 지속적이고 반복성자극과 일상생활에 있어서 불쾌감을 호소하였으며 가축 및 농작물의 피해가 나타나고 고무제품의 노화 등 재산상의 피해가 크게 나타남.

(나) 1954년 로스엔젤레스의 스모그사건이후 20여년간 스모그를 경험하였으며 1955년에는 대기중 오존농도가 0.05ppm을 기록하기도 하였슴.

(다) 1979년 가을에는 주민의 83%가 육체적으로 불쾌하거나 건강에 대한 불안을 호소하였으며 면접조사에 의하면 주민의 57%는 눈의 통증과 자극을 느끼고 4인중 1인은 두통, 호흡자극, 인후염증을 호소하였다고 함.

(라) 처음에는 런던형 스모그와 같은 아황산가스에 의한 것으로 생각하고 그에 대한 대책을 강구하였으나 캘리포니아 공과대학의 생화학교수인 Haagen-Smit 박사가 탄화수소와 오존을 공기중에서 햇볕을 쪼여 눈을 자극하고 식물에 피해를 주는 에어로졸을 생성하는데 성공하므로써 로스앤젤레스스모그는 햇볕과 산화질소의 존재하에서 탄화수소가 산화되어 광화학스모그가 생성된다는 광화학스모그설을 1949년에 발표하므로서 질소산화물 및 탄화수소의 방지대책을 추진함과 더불어 질소산화물 및 탄화수소의 주 배출원인 자동차 배출가스규제를 세계에서 제일 먼저 실시하게 됨.

(마) 로스앤젤레스지역은 지리적으로 서쪽이 태평양에 연해있는 분지로서 년간 평균풍속이 2.8m/sec이며 기상조건도 북태평양 동부에 반영구적으로 존재하는 고기압의 동쪽끝에 위치하고 있기때문에 여름과 가을에는 항상 침강성 역전층을 형성해 도시내에서 발생한 오염물질이 상공으로 확산되지 못하고 축적되어 있으면서 강한 햇볕에 의해 광화학반응을 일으켜 스모그를 생성시킴.

(바) 로스엔젤레스 지역에는 1990년 이후 약 1천만대 이상의 자동차가 운행되면서 일일 약 6천톤의 오염물질을 대기중으로 배출시키고 있어 이들 오염물질이 나쁜 기상조건 때문에 확산되지 못하고 강한 햇볕에 의해 광화학 스모그를 형성시키므로서 오늘날 세계에서 가장 엄격한 자동차 배출가스 규제와 기타 배출원 규제를 하고 있음에도 불구하고 옥시단트의 대기환경 기준을 달성하지 못하고 있는 실정임.

(2) 동경의 광화학스모그

일본 동경에도 1967년부터 1970년 사이에 동경시내의 옥시단트 농도가 0.15 ppm을 초과하는 날이 46일이나 되었고 1970. 7.18부터 9월말 전지역에 광화학스모그가 일어나 3개월 사이에 일만여명의 시민이 광화학스모그 피해를 호소하였슴.

(가) 눈의 자극과 두통 및 구토증을 수반하고 심한자는 호흡곤란을 호소하기도 하여 단순한 로스앤젤레스형의 스모그가 아니라는 견해도 있었으나 이때 대기중 옥시단트 농도가 평상시보다 월등히 높아 0.34 ppm에 달하였으며 SO2가 산화하여 SO3(무수황산)로 전환하여 황산미스트의 농도가 평상시의 10배 정도 되었고 부유분진도 평상시의 10배 정도되어 461 ㎍/m3였다고 함.

(나) 동경에서 발생했던 스모그는 단순한 런던형 스모그 또는 로스엔젤레스형 스모그라고 하기보다는 이 두가지의 원인이 복합적으로 작용했던 스모그 사건이라 할 수 있슴.

(3) 멕시코의 고농도 오존

멕시코시는 높은 산들이 둘러싸고 있는 계곡에 위치하고 인구 1500만이 집중되어 있어 대기오염의 악화에 시달리고 있으며 특히 고농도의 오존발생이 큰 문제로 부각되고 있다. 1992년 3월에는 0.48 ppm의 오존농도가 기록되었고 주간의 98 %가 0.11 ppm을 넘는 것으로 나타났다.

(4) 우리나라의 광화학스모그

우리나라에 있어서 광화학스모그 현상에 대해서는 수도권을 중심으로 보고된 바 있으며(이민희 등, 1987; 정용승 등, 1991; 최덕일 등, 1993; 문길주 등, 1994), 고농도 오존발생과 시정감소현상을 중심으로 조사되었다. 특히 여름에 오존의 고농도와 함께 미세입자의 증가가 시정을 감소시키는 광화학스모그 현상이 보고 되었으며(최덕일 등, 1993), 일중 최고 오존농도가 0.1 ppm을 초과하는 일수가 점차 증가하는 추세를 보인다.

다. 스모그의 원인과 배출원

(1) 광화학스모그의 원인물질인 질소산화물은 연료의 연소시 고온에 의하여 공기중의 질소와 산소가 반응하여 생성되는 것으로서 주요한 배출원은 자동차, 기차, 비행기, 선박과 같은 이동배출원과 산업장, 빌딩 및 가정용 보일러와 같은 고정 배출원에서 배출된다.

(2) 탄화수소는 석유의 불완전연소와 증발에 의해서 배출되므로 자동차가 주요한 배출원이며 정유시설, 저유소 및 정유소의 연료탱크에서 증발되는 연료, 페인트 용매, 세탁소에서 사용하는 용매등도 탄화수소의 주요한 배출원이다.

(3) 유럽과 미국의 교외지역에서는 산림에서 배출되는 이소프렌(Isoprene), 피넨(Pinene) 등의 탄화수소등도 오존 생성의 주요 원인물질로서 기여하고 있는 것으로 보고된바있다.

라. 스모그의 영향

(1) 광화학스모그의 생성물질은 오존, 이산화질소, 알데히드, 팬과같은 물질로서 이들 오염물질의 대기중농도는 그렇게 높지 않으므로 개개의 오염물질에 의한 인체의 피해는 크지 않으나 복합적인 피해로 나타나게 된다.

(2) 오존은 광화학스모그의 대표적인 물질로서 대도시의 대기오염에 크게 영향을 미치고 있으며 오존에 노출되면 상기도의 반사성 기관지수축을 일으켜 심호흡이 어렵고 뇌의 통증과 기침과 같은 자각증상이 나타나며 생리학적 반응이 감퇴된다고 한다.

(3) NO2는 도시대기중에 존재하는 정도의 농도에 대해서는 폐기능이나 생리학적인 영향을 거의 미치지 않으나 광화학스모그 생성에 기여하기 때문에 중요시하고 있다.

(4) 알데히드는 눈을 자극하는 물질이지만 1 ppm에서 5분 정도 노출되어야만 눈의 자극을 느낄정도이며 팬은 눈을 따끔따끔하게 하는 물질로서 눈을 피로하게 하며 전체 옥시단트 농도가 0.1 ppm이상일때 눈의 자극증상이 자주 나타난다고 한다.

마. 문제점

(1) 대도시지역에서 자동차의 증가와 함께 연료 사용량의 증가로 인한 광화학스모그의 원인물질로 작용하는 질소산화물과 탄화수소화합물의 배출량이 급증하고 있으며 이로 인하여 고농도 오존 발생일이 증가하고 있는 실정이다.

(2) 이러한 현상은 인구의 도시지역 밀집현상과 생활 양식의 선진화와 함께 지속적으로 심화되고 지역적으로 확산될 것으로 판단된다.

(3) 우리나라 대도시지역에서의 오존 농도의 현황은 다음의 표 3.11.1과 같으며 미국 LA의 경우도 30여년간의 지속적인 저감 노력에도 불구하고 90년대 들어서도 1년동안 60일가량 0.2ppm을 초과하고 있는 실정이고 일본 동경도의 경우 93년과 94년에 오존농도가 0.12ppm를 초과횟수는 각각 5회, 12회로 보고되고 있다.

표 3.11.1 서울 지역 오존 농도의 등급별 발생빈도 (단위 : %, 기간 : '90∼'98)

   

농도

(ppb)

<10

10∼20

20∼30

30∼40

40∼50

50∼60

60∼70

70∼80

80∼90

90∼100

>100

90

65.3

19.6

8.1

3.7

1.7

0.8

0.4

0.2

0.1

0.1

0.1

91

57.8

21.0

10.7

4.9

2.4

1.3

0.8

0.4

0.2

0.2

0.1

92

56.4

22.8

11.2

5.0

2.2

1.0

0.5

0.3

0.2

0.1

0.2

93

51.7

25.1

13.1

5.5

2.5

1.1

0.5

0.2

0.1

0.1

0.0

94

52.8

21.8

12.3

6.6

3.2

1.5

0.8

0.4

0.2

0.1

0.2

95

53.0

23.8

12.2

6.1

2.9

1.2

0.6

0.2

0.1

0.0

0.0

96

47.9

22.9

13.7

7.6

3.9

1.9

1.0

0.5

0.3

0.2

0.1

97

45.9

24.3

14.3

7.5

3.8

2.1

1.1

0.5

0.3

0.2

0.1

98

43.3

23.6

15.7

9.0

4.2

2.0

1.0

0.5

0.3

0.1

0.1

   

바. 대책

(1) 선진국의 경우 대도시지역의 광화학스모그현상에 대한 대처 방안으로서 실시되고 있는 것은 크게 두가지의 제도로 대별할 수 있다.

(가) 대기오염경보제도과 같이 오존경보 혹은 예보제도의 실시이며 이와같은 제도의 실시는 대기오염 에피소드와 같은 대기오염 피해, 사고를 최소화하고 가능한 한 미연에 방지하기 위한 대응 방이다. 이러한 대기오염 경보제도는 미국, 일본 등의 선진국에서는 이미 오래전부터 실시하고 있으며 대기오염농도가 일정 농도를 초과하고 그 상태가 일정시간 이상 지속될 것으로 판단될 때 오염농도별로 주의보, 경보, 중대경보 등을 발령하는 제도이다.

(나) 보다 적극적이고 근본적인 대책으로서 광화학스모그의 생성 원인물질인 질소산화물과 탄화수소화합물의 배출량을 최소화하는 것으로 이들 물질의 배출규제를 실시하는 방법이 있다.

1) 질소산화물의 경우 모든 연소시설에서 배출되며 특히 발전소, 제련소와 같은 대형 연소 시설 및 LNG와 같은 청정연료의 연소시설과 자동차에서 배출되는 양이 많으며 이들 배출시설에서 방지시설을 통한 질소산화물의 저감방안이 있으나 질소산화물의 방지기술이 어렵고 설치 및 관리비용이 큰 것이 문제이다.

2) 탄화수소화합물 배출량의 저감은 오존 생성을 줄이는 중요한 방법중의 하나이며 탄화수소의 주요 발생원인 자동차의 배기가스에 대한 배출규제의 강화와 함께 석유정제 및 저장, 운반시설들에 대한 시설기준의 강화를 통하여 배출량의 저감을 위하여 노력해야 될 것이고 도장시설 및 용매 사용시설에 대한 보강이 필요하다.

3) 탄화수소의 경우에 산림에서 발생되는 부분을 제어할 수 없는 제한성이 있다.

참고문헌

1. J.D. Butler, Air Pollution Chemistry, (1979), Department of Chemistry The University of Aston Birmingham England.

2. S.K. Fiedlander, (1977), Smoke, Dust and Haze, John Wiley & Sons.

3. H.T. Bloemen, J.Burn, (1993), Chemistry and analysis of volatile organic compounds in the environment, Blackie Academic & Professional

4. D.R. Blake, F.S. Rowland, (1995), Yraban leakage of liquefied petroleum gas and its impact on Mexico city air quality, Science, 269, 18

5. 최덕일, 한의정, 한진석 등, (1993), 도시 대기오염의 특성과 광화학반응에 관한 연구, 국립환경 연구원

6. 정용승, (1991), 대도시 광화학스모그에 관한 연구, 한국환경과학연구협의회

7. 문길주 등, (1994), 서울지방의 스모그현상 연구(Ⅲ), 한국과학기술연구원

8. 이민희, 한의정, 신찬기 한진석 등, (1987), 대기중 입자상물질의 생성 및 동태에 관한 연구, 국 립환경연구원

작성자 : 대기화학과장 환경연구관 한진석(공학박사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-11.htm>

   

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

시정장애  (0) 2016.06.24
산성비  (0) 2016.06.24
수은  (0) 2016.06.24
휘발성유기화합물  (0) 2016.06.24
황화수소  (0) 2016.06.24

   

   

10. 수 은 (Hg)

가. 성 상

   

상온에서 액체상태로 존재하는 유일한 금속으로서, 광택이 있으며 은백색이다. 전기를 잘 통하고 유리를 적시지 않으며 연성이 좋다. 수은은 주로 Elemental mercury (Hg0), 무기수은 화합물 (HgCl2), 유기수은 화합물 (메틸수은) 등의 세 가지 형태로 존재하며 이러한 수은 전체의 화합물을 총수은이라고 한다. 무기수은 화합물은 금속수은, 제1수은염, 제2수은염 또는 아말감으로 나뉘어지고, 유기수은 화합물은 알릴 수은과 알킬 수은화합물로 나뉘어진다. 알릴 수은화합물로는 초산 페닐 수은 (농약)이나 머큐로크롬 (소독약) 등이 있고, 알킬 수은화합물로는 메틸 수은, 에틸 수은 및 메토시 에틸 수은염 (농약) 등이 있다. 모든 수은의 형태는 매우 독성이 있고, 각각의 형태마다 인간의 건강에 각기 다른 영향을 준다.

이온형태에 있어서 수은은 Hg(Ⅰ)과 Hg(Ⅱ)이라고 하는 두 종류의 산화 형태로 존재하는데 이 중에서 Hg(Ⅱ)가 더 안정적이다. 수은은 철을 제외한 거의 모든 금속과 합금이나 아말감을 형성하는 특성을 갖고 있다. 수은은 부식 저항이 뛰어난 금속을 만들기 위해 vanadium, iron, niobium, molybdenum, cesium, tantalum, tungsten과 아말감을 형성한다. 수은은 실온에서 안정적인데 공기, 암모니아, 이산화탄소, 질소산화물, 산소와는 반응하지 않으나 할로겐이나 황과는 즉시 결합한다. 수은은 대기중의 H2S와 반응하기 때문에 밀폐된 용기에 보관해야 하며 염산에는 영향을 받지 않지만 진황산에는 영향을 받는다. 질산에 용해되어 Hg(Ⅰ)염이나 Hg(Ⅱ)염을 형성한다. 유기수은은 특히 독성이 강한데, 공해병의 원인물질이기도 한 알킬수은도 유기수은의 한 종류이다. 이에 비해 무기수은은 비교적 독성이 약한 편이고, 공장의 공정에서 직접 혹은 미생물에 의해 유기수은으로 변한다.

o 원자번호 : 80

o 원자량 : 200.59 g

o 비중 : 13.55 g/㎤ (20℃)

o 비점 : 356.7

o 융점 : -38.87℃

o 증기압 : 1.3×10-3 mmHg (20℃), 2×10-3 mmHg (25℃)

   

나. 발생원 및 용도

(1) 발생원

㈎ 수은의 primary production은 주로 금광의 부산물로서 발생한다. 예전에는 Nevada에 있는 수은광석에서 채광되었으나 1990년에 폐광되었고 아직도 Nevada, California, Utah에 있는 금광석에서 부산물로 비교적 소량이 생산된다.

㈏ 수은의 secondary production (recycling)으로는 processing of scrapped mercury-

containing products와 산업폐기물 등이 있다. recycled mercury의 주요 배출원으로는 치아 아말감, 산업 및 전기 제조시설로부터의 scrap mercury (형광 램프 포함), 연구 실험실과 electrolytic refining plants로부터의 폐기물과 슬러지, 수은 배터리 등이 있다.

㈐ EPA가 의회에 제출한 보고서에 의하면 대기로의 수은 배출원으로는 석탄 연소시설 (발전 소), 의료용 폐기물 소각시설(MWIs), 도시고형폐기물 소각시설 (MWCs), 염소-알칼리 공 장, 구리·납 제련소, 시멘트 제조시설 등이 있는데 이 중에서도 연소시설의 보일러가 전체 인위적인 배출원의 거의 25%를 차지하고, 그 중 90% 이상은 석탄 연소시설의 보일러가 차 지하고 있다. 수은 배출량 자체로 보면 발전소가 가장 큰 배출원이긴 하지만, 발전소에서 사용하는 화석연료보다 폐기물속의 수은 함유 비율이 크기 때문에 소각장에서의 배출농도 가 높고,또한 금속생산공정이나 염소생산공정에서 배출되는 수은 농도가 소각장보다 높긴 하지만 총배출량은 소각장보다 훨씬 적다.

(2) 용도

㈎ Elemental mercury는 전 액체 범위내에서 동일한 부피팽창을 하고 표면장력이 크기 때문에 기압계, 압력계, 온도계 및 기타 측정장치로 사용된다. 또한 전기 저항도가 낮기 때문에 금 속중에서 가장 좋은 전기 전도체중에 하나로서 배터리, 전기램프 등을 포함한 전기 분야에 서 폭넓게 사용되고 있으며, 산업 공정, 정제, 윤활유, 치아 아말감 등에도 사용된다.

㈏ 무기수은제

여러 종류의 화합물이 여러 용도에 사용되고 있으나, 농약으로는 살충제로서 승홍이 사용되 고 있다. 승홍은 살충력이 강한 반면 작물에 대한 약해도 큰데 유제나 분제로 사용하며, 승 홍, 승홍정, 브라스트, 브라민 등의 상품명으로 시판된다. 승홍은 감자, 담배, 야채 등의 병 해충 구제에 사용되고, 물에 잘 용해되지 않으므로 소량의 열탕에 용해하여 사용해야한다. 수은은 농작물중에서 농축되어 그것을 취식한 인간의 체내에 다시 농축되므로 주의해야 한 다.

㈐ 유기수은제

살균제로 벼 도열병의 특효약으로 많이 사용된다. 유기수은계 농약의 대표적인 것으로는 PMI와 PMA가 있는데 이 농약은 토양 잔류성이 강하여 반감기가 5∼15년 정도이다. 우리나 라에서는 1970년 말에 제조·사용이 금지되었다.

   

다. 독성영향

(1) 수은

상온에서는 은백색의 액체상태로 존재하며 피부와 접촉하면 국소적으로 피부염을 유발한다. 호흡기 및 소화기 경로로 인체에 침입하면 80% 정도가 신장 및 간 등에 축적되어 소뇌의 기능을 마비시킨다. 수은은 우리 몸에 흡수되면 용해되지 않고 거의 그대로 장기나 신경계에 고도로 축적되는 성질을 지니고 있다. 이것이 계속 흡입되서 몸안에 축적되어 총 수은량이 30 ppm이상이 되면 수은 중독현상을 일으키게 된다. 미나마타시의 환자중에는 200 ppm인 사람도 발견되었다고 한다. 수은의 축적에 의한 중독을 일으키게 되면, 만성 신경계의 질환으로 인해, 운동장애, 언어장애, 난청, 심하면 사지가 마비되어 죽음에까지 이르른다. Elemental mercury의 주요 노출경로는 작업환경에서의 흡입을 통해서이다. Elemental mercury에 저농도로 노출되는 또다른 경우는 입속의 치아 아말감으로부터 방출되는 경우이다.

(2) 무기수은 화합물

염화 제2수은 (승홍), 염화 제1수은 (감홍), 질산 제2수은, 질산 제1수은 등이 있다. 그 독성은 오래전부터 알려져 있으며, 급성 중독 또는 만성 중독을 일으킨다. 특히 중요시해야 할 것은 무기 수은이 자연계에 생물학적으로 유기수은화된다는 사실이 실험적으로 확인된 점이다. 무기수은 화합물과 알킬 수은화합물에 의한 중독증상은 서로 유사하다. 뇨와 함께 배출되기 쉬으므로 중증의 증상은 적으며, 만성적인 증상이 나타난다. 이에 반해 알킬 수은화합물은 신경계를 침범, 손발이 떨리고 언어장애, 시력 감퇴 등의 중독증상이 나타난다.

(3) 메틸수은

일반적으로는 염화메틸수은을 가리키며, 강한 신경독성을 나타내고 미나마타병의 원인물질로서도 유명하다. 알데히드 제조공정에서 촉매로 사용된 무기수은의 일부가 메틸수은으로 변화하고, 이것이 공장배수로 방출되어 어패류에 고농도로 축적되는데 이 어패류를 오랜 기간 잡아먹은 사람들에게 불가역성의 중추신경계장애, 이른바 미나마타병을 일으킨다. 메틸수은을 고농도로 섭취한 산모에게서 태어난 아기는 지능발달 지연, 보행장애, 시력감퇴, 대뇌마비 등을 나타낸다. 메틸수은에의 노출은 주로 물고기를 섭취함으로써 발생한다. 예전에는 살균제를 처리한 곡물과 그러한 곡물을 섭취한 동물의 고기를 통해서 메틸수은이 노출되었다. 그러나 수은을 포함한 살균제는 현재 미국에서 금지되어 이러한 경로로 노출되는 경우는 무시할 정도이다.

(4) 급성영향

인간이 Elemental mercury에 고농도로 단기간 흡입 노출되면 환각, 정신착란, 자살 등과 같은 중추신경계 영향을 일으킨다. 가슴 통증, 호흡곤란, 기침, 폐기능 장애, 간질성 폐렴 등과 같은 소화기와 호흡기의 영향은 Elemental mercury에 흡입 노출되었을 때 발생하는 것으로 알려져 있다.

무기수은 화합물에 단기간으로 경구 노출되었을 경우의 증상에는 금속성 맛, 메스꺼움, 구토, 심한 복부 통증 등이 있다. 대부분의 무기수은 화합물에 대한 치명적인 단기간 섭취량은 성인의 경우 1∼4 g, 70 ㎏인 사람의 경우 14∼57 ㎎/㎏이다. 메틸수은에 고농도로 단기간 노출되면 귀먹음, 지각수준 장애, 사망 등과 같은 중추신경계 영향을 일으킨다. 메틸수은의 치명적인 최소 섭취량은 70 ㎏인 사람의 경우 20∼60 ㎎/㎏인 것으로 추정된다.

(5) 만성중독 (비발암성)

인간이 Elemental mercury와 메틸수은에 장기간 노출되면 중추신경계에 영향을 준다. 신경과민, 흥분, 부끄러움 증가, 떨림 등과 같은 영향들은 Elemental mercury에 의한 것이고, 감각이상, 시력감퇴, 불쾌감, 언어소통 장애, 시야감소 등은 메틸수은에 의한 것이다. 장기간 노출과 무기 수은은 신장에 영향을 미친다.

중추신경계는 Elemental mercury의 독성이 인간에게 미치는 주요한 목표 기관이다. 그허한 영향에는 신경과민, 흥분, 과도한 부끄러움, 불면증, 유연증, 치은염, 떨림 등이 있다. Elemental mercury에 장기간 노출되면 단백뇨 등 인간의 신장에 영향을 준다. Acrodynia는 Elemental mercury나 무기수은 화합물에 노출된 어린이들에게서 발견되는 희귀한 신드롬이다. 이것은 심한 다리 경련, 흥분, 감각이상, 손·발·코 등의 피부가 벗겨지는 등의 증상이 있다.

무기수은에 장기간 노출되는 경우의 주요 영향은 신장 장애이다. 메틸수은에 장기간 노출되는 경우의 주요 영향은 중추신경계의 피해이다. 초기 증상은 마비, 시력감퇴, 불쾌감 등이다. 상당량이 섭취된 경우에는 귀먹음, 언어장애, 시야감소 등이 발생한다.

(6) 생식과 발생에 미치는 영향

Elemental mercury이 인간의 생식과 발생에 미치는 영향에 관한 연구는 혼합된 결과를 보여준다. 하나는 수은 노출과 자연유산과는 관련이 없다고 보는 반면, 다른 하나는 자연유산의 비율이 증가한다고 본다. 다른 연구에서는 출생시의 결함이 있는 빈도가 더 높다는 것을 보여준다. 무기수은이 인간의 생식과 발달에 미치는 영향에 대해서는 아무 정보가 없고, 동물 연구에서는 고환세포의 변경, 재흡수율의 증가, 비정상적인 발달 등의 영향이 보고되었다. 메틸수은의 경구노출은 발달에 상당한 영향을 주는 것으로 관찰되었다. 메틸수은을 고농도로 섭취한 산모에게서 태어난 아기는 지능발달 지연, 보행실조, 귀먹음, 시야감소, 시각장애, 대뇌마비 등 중추신경계 장애를 보인다. 저농도의 메틸수은에서도 발달 지연과 비정상적인 반사작용을 보이는 것으로 알려졌다.

(7) 발암성

Elemental mercury과 인간의 암과 관련된 몇 가지 연구가 수행되고 있으나 이러한 연구는 근거가 확실한 노출 데이터 등의 부족으로 결론을 내리지 못하고 있다. 무기수은 화합물이 인간의 발암성에 미치는 잠재적인 영향을 명확히 밝히려는 세 개의 연구가 있다. 염화수은 (HgCl(Ⅱ))의 쥐에 대한 장기적인 연구에서는 위상부의 발병율 및 갑상선 종양의 증가, 신장부의 종양 증가 등이 보고되었다. 메틸수은이 인간의 발암성에 미치는 영향에 대해서는 아무런 연구도 없고 쥐의 신장부 종양에 관한 동물 보고서만이 하나 있다. EPA는 무기수은과 메틸수은을 인간 발암성이 가능한 Group C로 분류하였고, elemental mercury는 인간 발암성으로 분류되지 않은 Group D로 분류하였다.

표 3.10.1 세계 여러 기구에서 제시하는 폭로 허용 기준

   

NIOSH IDLH (mercury vapor)

28 ㎎/㎥

NIOSH IDLH (organo (alkyl) mercury compounds)

10 ㎎/㎥

OSHA PEL (mercury vapor), ACGIH TLV (all forms except alkyl vapor)

0.1 ㎎/㎥

OSHA PEL, ACGIH TLV, NIOSH TLV (mercury vapor)

0.05 ㎎/㎥

OSHA, ACGIH(STEL) (alkyl compounds)

0.03 ㎎/㎥

ACGIH TLV, NIOSH TLV (alkyl compounds)

0.01 ㎎/㎥

Reference Dose (RfD) (for methyl mercury)

0.0003 ㎎/㎏/d

Reference Concentration (RfC) (for elemental mercury)

0.0003 ㎎/㎥

   

라. 자연계 분포

수은은 지구상의 거의 모든 곳에 존재하며, 주로 광물중에 가장 많이 함유되어 있고, 해수, 토양, 대기중 및 생물체에도 고루 존재하고 있다. 전지구적으로 볼 때 수은의 지하 매장량은 대략 20만톤으로 알려져 있으며, 이들 중 과반수가 스페인 지역에 매장되어있다. 수은의 지구상에서의 존재도를 보면 조암광물에 0.1∼7 ppm, 화성암에 대략 64∼80 ppb, 퇴적암에 30∼500 ppb, 토양중에 약 150 ng/g, 해수중에 평균 3 ng/l, 일본에서의 우수중에는 평균 340 ng/l, 대기중에는 지역 및 계절적 차이가 있으나 서울 도심지역의 '88년도 년평균치가 14.7 ng/㎥이다. 화석연료인 석탄 및 석유류에는 대략 0.7∼33 ppm(평균 3.3ppm)의 수은이 존재한다. 석탄류의 연소시에는 전체 배출수은의 98%가 가스상으로 배출된다고 보고되고 있다.

   

마. 규제법규 및 각종 기준

(1) 한국 : 모든 배출시설 5 ㎎/S㎥

(2) 미국 : 도시폐기물 소각시설 (기존 및 신규시설) 80 ㎍/S㎥ (7%O2)

(3) 독일 : 폐기물 소각시설 0.05 ㎎/N㎥

대기공학과 환경연구사 석광설(공학석사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-10.htm>

   

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

산성비  (0) 2016.06.24
광화학 스모그  (0) 2016.06.24
휘발성유기화합물  (0) 2016.06.24
황화수소  (0) 2016.06.24
Aldehydes  (0) 2016.06.24

9. 휘발성 유기화합물

   

가. 성상

(1) 정의 : 휘발성유기화합물(VOC)은 증기압이 높아 대기중으로 쉽게 증발되고, 대기중에서 질소산화물과 공존시 태양광의 작용을 받아 광화학반응을 일으켜 오존 및 PAN 등 광화학 산화성 물질을 생성시켜 광화학스모그를 유발하는 물질의 총칭이다. 현재 국내에서는 탄화수소류중 레이드 증기압이 10.3 킬로파스칼 (또는 1.5 psia)이상인 석유화학제품·유기용제 또는 기타 물질로 정의되어 있다. VOC는 수많은 화합물의 총칭이고, 발생원도 다양하여 그 범주를 정하기는 어렵지만 미국 및 일본에서는 다음과 같이 정의하고 있다.

(가) 미국 EPA(40 CFR 51.100, February 3, 1992) : VOC는 일산화탄소, 이산화탄소, 탄산, 금속성 탄산염 및 탄산 암모늄을 제외한 탄소화합물로서 대기중에서 태양광선에 의해 질소산화물(NOx)과 광화학적 산화반응을 일으켜 지표면의 오존농도를 증가시켜 스모그현상을 일으키는 유기화합물질이다. 대표적인 물질들로서 벤젠, 톨루엔, 프로판, 부탄, 헥산 등 광화학반응성이 에탄보다 큰 318종의 물질과 이들 물질이 포함된 진증기압(True Vapor Pressure : TVP)이 1.5psia 이상인 석유화학제품 및 유기용제 등이다. 단 메탄, 에탄, 메틸클로라이드, 메틸클로르포름, 클로르플로르탄소류 및 퍼플로르탄소류 등 광화학반응성이 낮은 화합물은 제외한다.

(나) 일본 탄화수소류 대책 지도지침 : 탄소화합물중 일산화탄소, 이산화탄소 , 탄산 등 염류를 제외한 유기화합물질(단, 메탄은 제외)로 다음의 화합물이 해당된다.

1) 원유, 가솔린, 나프타 및 항공터빈연료유 4호(JP-4) : 원유 등 석유제품

2) 1) 이외의 물질로 단일물질은 비점이 1기압에서 섭씨 150oC 이하인 물질, 혼합물질은 1기압에서 5퍼센트 유출점이 섭씨 150oC 이하인 물질, 단 일산화탄소, 이산화탄소, 탄산 및 그 염류, 메탄, 에탄, 트리클로로에탄 및 트리클로르트리플로르에탄 등 광화학반응성이 없는 물질은 제외한다.

(다) 유럽(VOC Control Directive 94/63/EC)

레이드증기압(Reid Vapor Pressure : RVP)이 27.6kPa(4.01 psia) 이상인 석유류 제품(첨가제 유무에 무관)으로 액화석유가스는 제외한다.

(2) 특징 : 휘발성유기화합물은 산업체에서 많이 사용되고 있는 용매와 화학 및 제약공장 플라스틱의 건조공정에서 배출되는 유기가스 등까지 매우 다양하며, 저비점 액체연료, 파라핀, 올레핀, 방향족화합물등 우리 생활주변에서 흔하게 사용되는 탄화수소류들이 거의 VOC이다. VOC는 독성화학 물질이고(특히 방향족화합물 및 할로겐화 탄화수소물질), 광화학산화물의 전구물질이며(olefin류의 탄화수소가 광화학반응성이 큼) 성층권의 오존층 파괴물질이기도 하며 또한 지구온난화에도 영향을 미치는 물질이기도 하다.

(3) 규제대상 VOC : 현재 국내 환경부에서 규제대상 VOC로 고시하고 있는 물질(환경부고시, '98. 7.1.)은 레이드 증기압, 광화학반응성, 물질사용량, 발암성등 유해성을 감안하여 31개를 선정하여 규제하고 있으며 앞으로 규제대상 물질을 점차로 확대하여 나갈 계획으로 있다. 표 3.9.1에 국내에서 규제하고 있는 31종의 VOC 물질들을 나타내었고 표 3.9.2와 표 3.9.3에는 유럽 및 미국에서의 오존생성 전구물질인 VOC를 나타내었다.

표 3.9.1 국내의 규제대상 VOC 물질 (31종)

   

Acetaldehyde

Acetylene

Acetylene dichloride

Acrolein

Acrylonitrile

Benzene

1,3-Butadiene

Butane

1-Butene, 2-Butene

Carbon Tetrachloride

Chloroform

Cyclohexane

1,2-Dichloroethane

Diethylamine

Dimethylamine

Ethyl Alcohol

Ethylene

Formaldehyde

n-Hexane

Isopropyl Alcohol

Methanol

Methyl Ethyl Ketone

Methylene Chloride

Methyl Tertiary Bytyl Ether

Propylene

Propylene Oxide

1,1,1-Trichloroethane

Trichloroethylene

휘발유

납사

원유

  

   

   

표 3.9.2 Preliminary European list of target VOC ozone precursors. (26종)

   

Ethane

1-Butene

Isoprene

Ethyl Benzene

Ethylene

trans-2-Butene

n-Hexane

o-Xylene

Acetylene

cis-2-Butene

2-Methylpentane

m-Xylene

Propane

n-Pentane

3-Methylpentane

1,2,4-Trimethylbenzene

Propene

i-Pentane

n-Heptane

1,3,5-Trimethylbenzene

n-Butane

trans-2-Pentane

Benzene

  

   

i-Butane

cis-2-Pentene

Toluene

  

   

   

표 3.9.3 US EPA list of target VOC ozone precursors. (55종)

   

Ethene

2-Methyl-2-butene

trans-2-Hexene

2-Methylheptane

Ethylene

Cyclopentene

cis-2-Hexene

3-Methylheptane

Ethane

trans-2-Pentene

Methylcyclopentane

n-Octane

Propylene

3-Methyl-1-pentene

2,4-Dimethylpentane

Ethyl benzene

Propane

1-Pentene

Benzene

m-Xylene

iso-Butane

cis-2-Pentene

Cyclohexane

p-Xylene

n-Butane

2,2-Dimethylbutane

2-Methylhexane

Styrene

trans-2-Butene

3-Methylpentane

2,3-Dimethylpentane

o-Xylene

1-Butene

2-Methylpentane

3-Methylhexane

n-Nonane

iso-Butene

2,3-Dimethylbutane

2,2,4-Trimethylpentene

iso-Propylbenzene

cis-2-Butene

Isoprene

n-Heptane

n-Propylbenzene

Cyclopentane

4-Methyl-1-pentene

Methylcyclohexane

1,3,5-Trimethylbenzene

iso-Pentane

2-Methyl-1-pentene

2,3,4-Trimethylpentane

1,2,4-Trimethylbenzene

n-Pentane

n-Hexane

Toluene

  

   

   

나. 자연계분포(환경용량) 및 오염원

(1) 자연적 배출원

(가) 습지 등 혐기성 조건하에서 박테리아의 분해를 통해서 메탄이 생성되어 배출되거나

(나) 수목류로부터는 terpene 등이 배출되며

(다) 초지(grass land)에서는 주로 ester와 ketone 등이 배출된다.

(2) 인위적 배출원

(가) 고정배출원(점오염원, 면오염원)

용제를 사용하는 도장시설, 석유정제 및 석유화학제품 제조시설, 정유사 및 저유소의 저장시설과 출하시설 및 주유소, 세탁소 및 인쇄소 등 면오염원에서도 일부분 배출된다. 또한 인간의 일상생활과 밀접한 관계가 있는 소비상품(예 : 실내공기 청정물질, 스프레이), 건축자재(예 : 페인트, 접착제) 등에서도 배출된다.

(나) 이동배출원

자동차, 기차, 선박, 비행기 등의 배기가스에도 다량 포함되어 있다.

(3) 배출원별 VOC 배출량

국가마다 약간씩 차이는 있지만 일반적으로 이동배출원인 자동차에서 30∼40%, 도장시설등 용제를 다량 사용하는 시설에서 30∼40%, 주유소 및 석유 저장.출하시설에서 10∼20% 를 차지하며, 세탁소 및 기타 배출원에서 나머지 10∼20% 정도가 배출되고 있다.

   

다. 독성 영향

(1) VOC가 유발하는 최대효과는 NOx 존재하에서 OH 라디칼 연쇄반응에 관여하여 오존을 시발로하는 광화학적 산화성 물질을 생성하는 것인데 일반적으로 VOC의 대기중 광화학반응은 다음과 같이 표시될 수 있다.

VOC + 2NO + 2O2 → R'C(O)R" + 2NO2

NO2 + hv (<400nm) → NO + O

O + O2 + M → O3 + M

------------------------------------------

VOC + 3O2 → R'(C(CO)R" + 2O3

(2) 휘발성유기화합물들은 물질에 따라 광화학스모그을 유발시키는 정도가 다른데 이러한 대기중에서의 광화학반응성 정도는 일반적으로 에틸렌을 기준물질(POCP = 100)로 하여 오존생성능력(POCP : photochemical ozone creating potential )으로서 표현되며 개별 화합물들의 POCP는 표 3.9.4와 같다. 표에서 살펴보면

(가) 1,2,4-Trimethylbenzen 및 Acrolein이 120으로 제일 높은 POCP 값을 나타내고 있고

(나) 일반적으로 올레핀 탄화수소류와 방향족 탄화수소류가 높은 POCP 값을 나타낸다.

(다) 한편, 메탄 및 클로르포름 등 할로겐화탄화수소류는 낮은 POCP 값을 나타낸다.

(라) Benzaldehyde는 다른 VOC 들과는 달리 대기중의 NOx와 반응하여 Peroxybenzoyl Nitrate를 생성하는데 이 물질은 대기중의 질소산화물을 감소시켜 오존생성을 억제시키므로 POCP 값이 음수(-35)로 나타나고 있다.

(3) 대류권 오존생성에 영향을 미치는 VOC는 광화학반응성이 높은 물질이 문제가 되는데, 반응성을 평가하는 수법의 기준이 되는 것은 OH 라디칼과의 반응속도이다. 표 3.9.5 에 주요 VOC의 반응속도와 대기중의 존재시간(반감기)를 나타내었는데 표에서 알수 있듯이 염소계용제는 광화학반응성은 낮지만 대기중 수명이 길어 오존층 파괴, 지구온난화 유발물질로 인식되고 있고, 또한 인체에 대한 직접적인 발암성도 더 큰 것으로 나타나고 있다.

(4) 방향족 탄화수소와 할로겐화탄화수소 등은 그 자체로서 건강에 유해하며, 특히 다고리방향족 탄화수소류는 대기중에 미량으로 존재하더라도 발암가능성이 있다. 발암성이 인정되는 몇가지 VOC에 대한 발암위험성을 표 3.9.6에 나타내었다.

표 3.9.4 몇몇 VOC의 오존생성능력(POCP) (1991)

   

VOC

POCP

VOC

POCP

Alkanes

Methane

Ethane

Propane

n-Pentane

Isopentane

n-Hxane

2,3-Dimethylbutane

Branched C12 alkanes

Cycloalkanes

Cyclopentane

Methylcyclopentane

Cyclohexane

Olefins

Ethylene

Propylene

1-Butene

2-Butene

1-Pentene

2-Methylbut-2-ene

1,3-Butadiene

Isoprene

α-Pinene

β-Pinene

Acetylenes

Acetylene

   

1

10

40

40

30

50

40

40

   

50

50

25

   

100

105

95

100

70

80

105

100

50

50

   

15

Aromatic hydrocarbons

Benzene

Toluene

Ethybenzene

0-Xylene

m-Xylene

p-Xylene

1,2,3-Trimethylbenzene

1,2,4-Trimethylbenzene

C10-Trisubstituted benzene

Ozygenated hydrocarbons

Formaldehyde

Acetaldehyde

Propinonaldehyde

Acrolein

Benzaldehyde

Acetone

Methanol

Ethanol

n-Oropanol

Chlorinated hydrocarbons

Methylene chloride

Choroform

Methyl chloroform

   

   

20

55

60

65

105

90

115

120

115

   

40

55

65

120

-35

20

10

25

45

   

1

1

0

   

표 3.9.5. 주요 VOC의 반응속도와 대기중의 존재시간(반감기)

   

화 합 물

반응속도(cm3/molc.sec)

대기중 수명 τ(일)

n-헥산

n-헵탄

초산에테르

벤젠

톨루엔

에틸벤젠

o-크실렌

m-크실렌

p-크실렌

사염화탄소

1,1,1-트리클로로에탄

트리클로로에틸렌

테트라클로에틸렌

5.58 x 10∼12

7.2 x 10∼12

1.82 x 10∼12

1.28 x 10∼12

6.19 x 10∼12

7.5 x 10∼12

14.7 x 10∼12

24.5 x 10∼12

15.2 x 10∼12

1.0 x 10∼15

1.19 x 10∼13

2.36 x 10∼12

1.67 x 10∼13

2.07

1.61

6.36

9.04

1.87

1.54

0.79

0.47

0.76

(31년)

97.26

4.90

69.31

   

표 3.9.6 주요 VOC에 대한 발암위험

   

  

   

환경농도1

(mg/m3)

실험방법

발암위험2

단위위험

(U.S.EPA)

벤젠

   

클로로포름

   

   

트리크로로에틸렌

   

   

테트라크로로

에틸렌

   

사염화탄소

   

   

1,2-디클로로에탄

벤조피렌

대표치 16.35

최대치 68.71

대표치 0.30

최대치 3.37

(도시지역 0.79)

대표치 0.50

최대치 8.81

(도시지역 2.43)

대표치 0.07

최대치 4.18

(도시지역 2.68)

대표치 0.17

최대치 0.97

(도시지역 0.88)

(도시지역 0.25)

대표치 0.001

최대치 0.008

흡입

   

경구

   

   

흡입

   

   

흡입

   

   

경구

경구

130.8

549.7

10.2

114.6

(26.9)

0.4

7.8

(2.1)

0.7

41.8

(26.8)

3.7

21.3

(19.4)

(4.8)

3.3

26.4

8.0 x 10∼6

   

2.3 x 10∼6

   

   

1.3 x 10∼5

   

   

4.8 x 10∼7

   

   

1.5 x 10∼5

   

   

2.6 x 10∼5

3.3 x 10∼3

1 : (도시지역)은 인구 백만이상의 도시의 평균치

2 : 백만명당 발생가능한 위험성

   

라. 규제 법규 및 각종 기준

(1) 한국의 휘발성유기화합물 규제 현황

(가) 점오염원 (대형배출원)

1) 레이드증기압 기준을 삭제하고

2) 도장, 세정, 저장등 대형배출원(제조업)으로 업종 특성에 맞게 배출억제て방지시설 설치기준으로 규제(대기환경보전법 28조의2)하며

3) 휘발성유기화합물질에 대한 규제가 1999년부터 본격적으로 시작되는 점을 감안, 대기오염물질배출시설(대기환경보전법 별표 2) 이상의 규모인 배출시설을 우선적으로 규제키로 한다.

(나) 비점오염원

1) 주유소て세탁소て정비소て인쇄소등 소형배출시설과 건물도장, 아스팔트 포장, 폐기물 매립장등의 배출원 중에서

가) 유해성이 큰 물질을 다량 배출하는 주유소て세탁소て정비소를 우선 규제하고

나) 건물도장등 비점오염원은 수용성페인트로 전환, 용제사용 저감 및 대체 등 오염예방을 유도한다.

(다) 이동오염원

1) 자동차에서 배출되는 증발가스를 제작차에 대한 테스트 기준을 통해 미국, 일본,유럽과 동일한 수준으로 관리(대기환경보전법 시행규칙 별표 20)하며

2) 지방자치단체별로 운행차대상 정기검사(Inspection and Maintenance), 지역 자동차운행량 삭감계획(5부제등)등을 수립て시행 예정으로 있다.

(2) 미국의 휘발성유기화합물 규제 현황

(가) 미국에서는 연방 대기정화법(CAA)이 1977년 개정되면서 년간 100톤 이상의 VOC를 배출하는 대규모 발생원에 대하여 배출을 제한하고 있고

(나) 각주는 환경기준을 달성하기 위하여 법을 제정할때 지침으로서 11개 업종에 대하여 제어 기술가이드라인(CTG)을 정하였으며, 이들 업종중 기존배출원에 대하RACT (Reasonable Available Control Technology : 합리적이용가능제어기술)을 적용하고 있다.

(다) 한편 환경에 중대한 영향을 미치는 다량의 오염물질을 배출하는 주요 배출원에 대해서는 NSPS(New Source Performance Standard : 신규발생원실시기준)을 제정하여 적용하고 있으며

(라) 1990년 CAA가 개정되면서 오존환경기준 미달성지역을 대폭 해소하기위해 지역을 5 단계로 구분하고 그 수준에 대응하는 RACT를 적용받는 대상의 규모를 종래 100톤에서 최저 10톤으로 하여 규제를 강화하였으며, 자동차 등 이동배출원에 대한 규제를 강화하였다.

(마) 주유소인 경우 주유시 VOC 회수가 의무화되어 대부분의 주에서 실시하고 있고, 연방오존기준치 0.12 ppm 미달성지역중 일부에서는 자동차에서 배출되는 VOC 회수를 요구하고 있다.

(3) 일본의 휘발성유기화합물 규제 현황

일본에서는 각 현마다 탄화수소류 대책 지도지침을 제정.운영하여 VOC를 관리하고 있는데, VOC를 배출하는 저장시설, 급유시설, 이동저장시설, 세탁시설 및 제조시설에 대하여 관리하고 있다.

(4) 유럽의 휘발성유기화합물 규제 현황

유럽경제공동체(EU)에서는 1994년 석유의 저장, 출하 및 판매시설에서 발생되는 VOC 배출제어에 관한 EU 법률을 통과시켜 유럽전체의 VOC 배출량을 감축하기 위해서 노력하고 있으며, 또한 국가별로 별도의 VOC 관리방안을 운영하여 시설별 VOC 배출량 저감을 위해 노력하고 있다.

(가) 독일

일반적으로 유해성 정도에 따라 VOC를 3 Class로 분류하여 각각에 대한 질량농도 한계치를 Class I은 20 ㎎/㎥, Class II는 50 ㎎/㎥, Class III는 100 ㎎/㎥을 설정하고, 각 Class의 합은 150 ㎎/㎥을 초과해서는 안 되는 것으로 되어있다. 예로서 도장용제는 Class II 또는 Class III에 포함된다.

또한 생산 및 저장용량이 연간 10,000㎥ 이상되는 정유시설에 대하여 VOC의 배출량을 최소화 시킬 수 있는 증기회수장치(vapor recovery facility)를 갖추도록 법으로 규정하고 있다.

(나) 영국

1990년 제정된 환경보호법에 대기유해물질로 VOC를 지정하여, 해당되는 제조과정에 대하여 규제하고 있으며, 행정지침으로서 Process Guidance Note(PG6/20(92))를 발효하여 시행하고 있다.

(다) 네덜란드

VOC 삭감계획인 [KWS2000]을 제정하여 VOC 배출량을 1981년 배출량의 50%로 삭감하기 위하여 VOC 배출원별 삭감목표를 정하여 실시하고 있다.

(라) 기타

주유소에서의 주유시 VOC 규제는 스위스가 '89년, 스웨덴이 '90년, 독일이 '91년에 실시되고 있으며, 유럽전체에 대한 규제는 아직 없다.

마. 오염 현황

VOC가 많이 발생되는 휘발유 및 유기용제의 년도별 사용량과 1993년 VOC 배출량 추정 치는 각각 표 3.9.7 및 표 3.9.8과 같다.

표 3.9.7 VOC 원인물질인 유류, 유기용제 사용량 추이 (단위 : 천㎘)

   

년 도

90

91

92

93

휘발유

1,287

1,650

1,856

2,178

페인트

-

581

619

1,288

표 3.9.8 VOC 발생량('93년 추정치) (단위 : 톤/년)

   

배 출 시 설

전국

서울

자동차배출가스

페인트

주유 및 저장시설

아스팔트

기타(잉크, 세탁)

140,454(48.1)

95,695(32.8)

22.134(7.6)

11,200(3.8)

22,481(7.7)

31,008(45.6)

23,924(35.2)

5,289(7.8)

2,800(1.4)

4,974(7.3)

합 계

291,964

67,995

   

바. 문제점 및 대책

(1) 휘발성유기화합물은 단일물질이 아니고 여러 화합물의 총칭이며, 또한 일반 대기오염물질과 다르게 배출원이 굴뚝으로 고정되어 있지 않고 저장시설, 수송수단 및 공정중에서의 증발 및 누출 등 불특정 배출원으로부터 배출되는 오염물질이므로

(2) 배출원 관리는 주요 배출원별 방지기술 등 시설관리가 주 관리 방법이며 개별 VOC 화합물별 배출량 산정 및 분석에 어려움이 뒤따른다.

(3) VOC 화합물들은 광화학 반응성 및 인체에 대한 발암성 등 유해성이 다르므로 개별 VOC 화합물의 배출현황 및 배출량 산정이 매우 중요하며, 또한 배출되는 수많은 화합물을 측정하기위한 측정방법의 확립, 분석기기 및 분석요원이 확보되어야 한다.

   

참고문헌

1. H.J.Th.Bloemend, J.Burn(1997) Chemistry and Analysis of Volatile Organic Compounds in the Environment.

2. 국내 VOC 관리의 현황과 문제점(1997), 한국대기환경학회

3. 유해대기오염물질 규제에 관한 국내 대응방안 연구(1994), 한국환경기술개발원

4. 휘발성유기화합물 방지기법 세미나(1996), 한국정보기술원

5. 유해가스 배출량 산정에 관한 조사연구(I) & (II)(1995,1996), 국립환경연구원

6. 휘발성유기화합물 저감대책 기술의 국제동향 조사보고서(1997), 한국에너지기술연구소

7. 대기환경규제지역 휘발성유기화합물질 배출시설 규제 업무편람(1999), 환경부

8. 자원환경대책(일본)(1994), Vol.29, No.2, 1∼22

9. 도장공학(일본)(1992), Vol.27, No.8, 374∼395

10. 울산의 휘발성유기화합물 현황과 정책 전망(1999), 울산지역 환경기술개발센터

   

   

작성자 : 대기공학과 환경연구관 차준석(공학박사)

   

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-9.htm>

   

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

광화학 스모그  (0) 2016.06.24
수은  (0) 2016.06.24
황화수소  (0) 2016.06.24
Aldehydes  (0) 2016.06.24
Toluene diisocyanate  (0) 2016.06.24

8. 황화수소

가. 성상

○ 화학식 : H2S(hydrogen sulfide)

○ 분자량 : 34.08

○ 밀도 : 1.539 g/L(0℃, 1 atm)

○ 끓는점 : -60.2℃(760 mmHg)

○ 녹는점 : -82.9℃(760 mmHg)

○ 비열 : Cp=0.24 cal/g·℃(30℃, 1 atm), Cv=0.18 cal/g·℃(30℃, 1 atm)

○ 발화점 : 260℃

○ 무색의 기체로서 계란 썩는 냄새가 나는 대표적인 악취 물질로서 유독성 가스로 취급

○ 물, 에탄올, 가솔린, 등유에 잘 녹음

○ 산소 중에서 푸른 불꽃을 내며 타서 이산화황을 생성하며, 산소가 부족할 경우 황을 생성

2H2S + 3O2 → 2H2O + 2SO2, 2H2S + O2 → 2H2O + 2S

○ 알칼리와 반응하여 두 가지 염을 생성

MOH + H2S → 2H2O + MHS(수소황화물)

2MOH + H2S → 2H2O + M2S(황화물)

○ 산화물을 잘 환원시키고, 특히 진한 질산 등의 산화제와는 격렬하게 반응하므로 위험함

○ 단백질 등의 유기 물질이 박테리아에 의한 분해 작용으로 인하여 천연적으로 발생된 황화수 소는 대기 중에서 산화하여 이산화황이나 황산염으로 변화하는 순환을 함

   

나. 발생원

(1) 인위적 발생원

㈎ 석유 정제공정이나 피혁, 아교, 형광물질 원료 등의 제조공정 중의 부산물로서 발생

㈏ 펄프공장의 경우, 펄프원료를 수산화나트륨(NaOH)과 황화나트륨(Na2S) 존재하에서 증류,분해하여 셀룰로오스를 얻는데, 이 때 황화수소, 메르캅탄 등을 부산물로서 발생

㈐ 염료, 공업약품, 의약품(디메틸 설파이드, 디메틸 설폭사이드 황화나트륨)의 원료로 사용함으로써 발생

㈑ 그 외 혐기성 발효가 일어날 수 있는 대도시의 하수 또는 쓰레기장 등에서 발생

(2) 자연적 발생원

㈎ 화산이나 온천, 납, 석고, 유황 광산 등의 황 또는 황화합물이 존재하는 지각층에서 발생

㈏ 광산에서는 황철광의 분해로 인하여 대기 중으로 발생되거나, 수중에 녹아 있다가 물이 흐르면서 공기 중으로 발산

㈐ 유정(油井)의 천연 가스에 섞여 있을 경우 이것의 생산, 수송, 정제시에 발생

㈑ 자연적 발생량(해면 : 32 x 106톤/년, 육지 : 72 x 106톤/년)이 인공적 발생량(3 x 106톤/년)보다 훨씬 많은 것으로 추정

㈒ 그러나, 인위적 발생은 한정된 지역에 국한

다. 독성

⑴ 황화수소는 독성이 강하며, 고농도 가스를 많이 흡입하면 함철 산화 효소의 파괴로 인하여 세포의 내부 호흡이 정지하여 중추 신경이 마비되어 실신하거나 호흡 정지 또는 질식 증상 을 일으킬 수 있음

⑵ 황화수소는 점막에 산으로 작용, 눈이나 호흡기계의 점막을 자극하며 심한 통증을 유발함 ⑶ 황화수소의 농도별 인체에 미치는 생리 작용은 표 3.8.1과 같음

표 3.8.1 황화수소의 농도별 인체에 미치는 영향

   

농 도(ppm)

증 상

1∼2

취기를 인지함

2.4

명확한 취기를 느끼나 고통스럽지는 않음

3

뚜렷하게 취기를 느낌

5∼8

심하게 불쾌한 취기를 느낌

80∼120

뚜렷한 증상없이 약 6시간 정도 참을 수 있음

200∼300

5∼8분 후에는 눈, 코, 목구멍 등의 점막에 강한 통증을 느끼고 30∼60분 견딜 수 있음

500∼700

약 30분간 호흡하면 아급성 중독을 일으켜 생명이 위험함

1000∼1500

즉시 급성 중독을 일으켜 실신하거나 호흡마비로 즉사함

   

⑷ 저농도의 황화수소는 결막, 코 및 인두에 자극을 주어 광선 현기증, 눈꺼풀의 수축 경련, 재 채기, 입안 및 인후의 건조 등을 유발하여, 사람이 눈물을 흘리고 침이 고이는 것을 느낌

⑸ 황화수소에 대한 결막의 반응은 상당히 심한데 많은 양의 눈물이 나오고, 빛을 피하려는 증상 (photophobia), 통증, 결막 부종, 눈꺼풀의 외번(eversion) 등을 그 예로 들 수 있고, 눈에 대한 이러한 증상은 노출을 중단시키면 수일 내에 사라짐

⑹ 50ppm에 장기간 노출되어 있을 경우 비염, 인두염, 기관지염이 발생된 예가 있음

⑺ 이 가스에 대한 축적 독작용은 없고, 인체에 흡입되면 장, 오줌, 호흡기로 배출됨

   

라. 오염 사례

⑴ 포자리카 중독 사고

-멕시코

-1950년 11월

-기상은 바람에 약하고 안개가 짙게 낀 상태

-각종 공장에서 배출된 황화수소로 주민 22,000명 중 320여명이 급성 증독병으로 입원

-그 중 22명이 사망

-중독 환자의 증상 : 기침, 호흡곤란, 점막 자극 등

⑵ 텍사스 사고

-미국 텍사스에 인접한 10개의 유정에서의 황화수소 배출

-농도는 4∼14%

-유정으로부터 발생한 고농도의 황화수소로 많은 가축이 죽었고, 특히 유정의 가스 탱크나 펌프 시설 근방이나 골짜기에서는 의식을 잃는 사람도 있었음

   

마. 관련기준의 비교

(1) 외국의 황화수소 환경기준

각 국의 환경대기 중의 황화수소 농도의 기준치는 표 3.8.2와 같음

표 3.8.2 각 국의 환경대기 중의 황화수소 농도 기준

   

국가

  

  

평균 시간(시간)

기준치(ppm)

비고

미국

캘리포니아주

  

1

0.1

  

  

   

미조리주1

  

0.5

0.5

0.05

0.03

b

c

  

몬타나주

  

0.5

0.5

0.05

0.03

b

c

  

뉴욕주

  

1

0.1

  

  

   

팬실바니아주

  

1

24

0.1

0.005

  

   

러시아

  

  

24

0.005

  

   

폴란드

  

  

0.33

24

0.33

24

0.04

0.013

0.005

0.005

d

d

e

e

독일

  

  

0.5

0.5

0.1

0.2

f

g

체코

  

  

24

0.005

  

   

캐나다

  

온타리오주

0.5

0.03

  

   

(출처 : Bela G. Liptak, 1984)

1 : 세인트 루이스 도심지역

2 : 1년에 2번이상 초과하면 안됨

3 : 연속 5일간 2번이상 초과하면 안됨

4 : 보호구역임

5 : 특별보호구역임

6 : 장기간 노출시

7 : 8시간 동안 1번이상 초과하면 안됨

(2) 우리나라 환경 및 작업장 기준

(가) 대기환경보전법(개정 '92. 8. 8, 시행 '94. 1. 1)에서 황화수소를 악취물질로 규정, 배출을

규제

1) 공업지역안의 사업장에서의 배출량 : 0.2ppm이하

2) 기타지역안의 사업장에서의 배출량 : 0.05ppm이하

(나) 산업안전보건법(개정 '90. 1. 13)에서 황화수소를 작업장 유해물질로 규정, 미국 ACGIH(미국 산업위생정부전문가회의)에서 권고한 TWA(8시간 가중 평균치) 10ppm, STEL(단시간 노출허 용농도) 15ppm을 작업환경 조건으로

정하여 규제

   

참고문헌

1. 이창기, (1993), 환경과 건강, pp68∼71.

2. Bela G. Liptak, (1984), Environmental Engineers' Handbook, Volume 2, pp176∼181.

3. Luigi Parmeggiani, (1971), Encyclopedia of Occupational Health and Safety, pp1090∼1091.

   

작성자 : 대기공학과 환경연구사 석광설(공학석사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-8.htm>

   

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

수은  (0) 2016.06.24
휘발성유기화합물  (0) 2016.06.24
Aldehydes  (0) 2016.06.24
Toluene diisocyanate  (0) 2016.06.24
TDI  (0) 2016.06.24

7. 알데히드류(Aldehydes)

가. 성상

(1) 포름알데히드

자극성냄새(냄새역치 : 0.8 ppm)를 갖는 가연성 무색기체로 물에 잘 녹고 살균방부제로 이용되며, 그 수용액은 포르말린으로 알려져 있다. 화학적으로는 반응성이 매우 센 환원제이며, 또한 많은 물질들(젤라틴, 아교 등과 같은 단백질)과 쉽게 결합하여 중합체를 형성한다. 포름알데히드는 피혁제조나 사진건판, 폭약등을 만들 때에도 이용되며, 또한 강한 반응성을 이용하여 요소계, 멜라민계 합성수지를 만드는 공정 등에 쓰인다.

(2) 아세트알데히드

아세트알데히드는 반응성이 매우 큰 물질로서 사용상 가장 유의할 점은 화재 및 폭발임. 액상이나 증기상 모두 다 가연성이 매우 크다. 특히 증기상은 다양한 농도범위에서 공기와 함께 가연성과 폭발성이 큰 물질을 형성함. 아세트알데히드는 수은촉매를 이용한 아세틸렌 수화반응, 구리촉매를 이용한 에탄올 산화 혹은 탈수소화반응, 파라핀 산화, 촉매로서 팔라듐과 염화구리를 이용한 에틸렌 산화 등과 같은 공정에 의해서 만들어짐. 아세트알데히드는 중요한 화학적 중간물질로서 수많은 반응에 참여하는데, 현재 생산된 총 아세트알데히드의 약 60%는 아세트산 제조에 사용된다.

나. 발생원

주요발생원은 포르말린제조, 합판제조, 합성수지 및 화학제품제조, 소각로, 석유정제, 유류 및 천연가스 연소시설 등으로 매우 광범위하다. 포름알데히드는 또한 실내공기오염의 주요 원인물질로 일반주택 및 공공건물에 많이 사용되는 단열재인 우레아폼 (Urea Formaldehyde Form Insulation)과 이 외에 실내가구의 칠, 가스난로 등에서의 연소과정, 접착제, 흡연 등에 의해 발생된다.

   

표 3.7.1 포름알데히드의 농도별 인체 자극정도

   

농 도 (ppm)

자 극 부 위

자극정도

0.25이하

0.25∼0.50

0.50∼1.50

10 이상

눈, 코, 호흡기도

"

"

"

"

매우 약한 자극

약한 자극

중간 자극

강한 자극

눈물흘림, 호흡곤란, 기침

   

다. 인체영향

1981년 Schenke 등의 보고서에 따르면 우레아폼을 단열재로 사용한 주택에 살고 있는 주민을 조사한 결과, 오랫동안 포름알데히드에 폭로되었을 경우 정서적 불안정,기억력 상실,정신집중의 곤란등을 유발한다. 동물실험에서는 폐수종, 비염의 증상이 있는 것으로 나타남. 포름알데히드에 반복하여 노출될 경우 눈, 코 및 호흡기도에 만성 자극을 일으키며 눈꺼풀에 염증을 유발시키는 것으로 알려지고 있으며 농도별 인체에 대한 자극정도는 표 3.7.1과 같다. 또한 이 물질이 수중에 존재할 경우 어패류에 대한 독성(어류에 대한 치사농도 : 50∼100ppm)도 있다.

호흡에 의한 영향을 보면 쥐의 4시간 기준 반수치사농도(LC50)는 250 ppm이고, 고양이는 8시간 기준 반수치사농도가 650 ppm이다. 사람에 대해서는 10 ppm이하일때 느끼는 자극정도는 표 3.7.1에 나타낸 바와 같고 30 ppm에서 질병증상이 나타나기 시작하며 100 ppm이상에서 1분이상 노출될시 심각한 영향을 나타낸다. 실내 또는 지하공간에서 포름알데히드에 의한 오염을 막기위해서 환기 시설을 충분히 가동하여야 한며, 사용시 손이나 피부에 묻었을 경우 그 부위를 비눗물로 깨끗이 씻어야 하고 눈에 들어갔을 경우 깨끗한 물로 15분이상 씻어야 한다.

또한 아세트알데히드는 점막을 자극하고, 중추신경계에 마취작용을 일으키며, 낮은 농도에서도 기관지 염증뿐만 아니라 눈·코·상부호흡기의 자극을 유발함. 고농도에서는 두통·마비·기관지 및 폐의 수종을 일으키고, 섭취시에는 멀미·구토·설사·혼수상태·호흡기 장애 등을 유발한다.

라. 대기중 허용농도 및 환경기준

(1) 각국의 대기중에서의 포름알데히드에 대한 허용노출농도는 표 3.7.2와 같음.

표 3.7.2 포름알데히드에 대한 허용노출농도

   

국 가

시간가중평균(TWA)

  

  

ppm

mg/m3

미국

러시아

체코

독일

스웨덴

브라질

일본

영국

3.0

-

-

0.5

0.8

1.6

2.0

2.0

-

0.5

0.5

0.6

1.0

2.3

2.5

3.0

(2) 미국 각 주의 포름알데히드에 대한 환경기준은 표 3.7.3과 같음.

표 3.7.3 미국 각주의 포름알데히드에 대한 환경기준

   

환경기준(mg/m3)

북부케롤리나, 북부다코타

메사츄세츠

뉴욕

펜실베니아

남부케롤리나

컨넥티코트, 남부다코타, 버지니아

인디아나

네바다

워싱톤

0

0.77

5.0

7.2

7.5

12.0

18.0

71.0

75.0

   

(3) 현재 대기환경보전법상 포름알데히드의 배출허용기준은 모든 배출시설에 대해 20 ppm이하로 규정되어 있다.

(4) 포름알데히드와 아세트알데히드는 '98년 초 대기환경보전법 개정시 특정대기유해물질로 확대지정되어 관리되고 있고, 대기오염공정시험방법도 개정됨. 포름알데히드에 대한 주시험방법은 크로모트로핀산법에서 DNPH/HPLC 방법으로 개정된다. DNPH/HPLC 방법은 알데히드화합물과 2,4-DNPH와의 유도체화반응을 이용한 것으로서 배출가스중의 알데히드는 흡수액인 2,4-DNPH와 반응하여 하이드라존 유도체를 형태로 전환되고 물을 부산물로 생성하게 되는데 이 때 생성된 하이드라존유도체를 HPLC로 분석하여 정량하게 된다. 이 시험방법에서 주의할 점은 굴뚝 먼지를 시료채취할 경우와 마찬가지로 알데히드류의 시료채취시에도 반드시 등속흡인을 해야한다는 것이다.

참고문헌

1. Marshall Sittig, Handbook of Toxic hazardous Chemicals and Carcinogens.

2. Luigi Parmeggiani, (1971), Encyclopedia of Occupational Health and Safety.

작성자 : 대기공학과 환경연구관 차준석(공학박사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-7.htm>

   

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

휘발성유기화합물  (0) 2016.06.24
황화수소  (0) 2016.06.24
Toluene diisocyanate  (0) 2016.06.24
TDI  (0) 2016.06.24
일산화탄소  (0) 2016.06.24

Toluene diisocyanate

From Wikipedia, the free encyclopedia

Jump to: navigation, search

  

  

Names

  

IUPAC name

2,4-diisocyanato-1-methyl-benzene

  

Other names

Tolylene diisocyanate

Methyl phenylene diisocyanate

  

Identifiers

  

CAS Number

584-84-9 

ChEBI

CHEBI:53556 

ChEMBL

ChEMBL1086446 

ChemSpider

13835351 

Jmol 3D model

Interactive image

RTECS number

CZ6300000

InChI[show]

  

SMILES[show]

  

Properties

  

Chemical formula

C9H6N2O2

Molar mass

174.2 g/mol

Appearance

Colorless to pale yellow liquid

Odor

sharp, pungent[1]

Density

1.214 g/cm3, liquid

Melting point

21.8 °C (71.2 °F; 294.9 K)

Boiling point

251 °C (484 °F; 524 K)

Solubility in water

Reacts

Vapor pressure

0.01 mmHg (25°C)[1]

Hazards

  

Safety data sheet

See: data page

EU classification (DSD)

Very toxic (T+)

Carc. Cat. 3

R-phrases

R26, R36/37/38, R40,

R42/43, R52/53

S-phrases

(S1/2), S23, S36/37, S45, S61

NFPA 704

1

3

1

Flash point

127 °C (261 °F; 400 K)

Explosive limits

0.9%-9.5%[1]

Lethal dose or concentration (LD, LC):

  

LC50 (median concentration)

14 ppm (rat, 4 hr)

13.9 ppm (guinea pig, 4 hr)

9.7 ppm (mouse, 4 hr)

11 ppm (rabbit, 4 hr)[2]

US health exposure limits (NIOSH):

  

PEL (Permissible)

C 0.02 ppm (0.14 mg/m3)[1]

REL (Recommended)

Ca[1]

IDLH (Immediate danger)

Ca [2.5 ppm][1]

Related compounds

  

Related isocyanates

Methylene diphenyl diisocyanate

Naphthalene diisocyanate

Related compounds

Polyurethane

Supplementary data page

  

Structure and

properties

Refractive index (n),

Dielectric constantr), etc.

Thermodynamic

data

Phase behaviour

solid–liquid–gas

Spectral data

UV, IR, NMR, MS

 verify (what is 

   

 ?)

  

Infobox references

  

Toluene-2,4-diisocyanate

Toluene diisocyanate (TDI) is an organic compound with the formula CH3C6H3(NCO)2. Two of the six possible isomers are commercially important: 2,4-TDI (CAS: 584-84-9) and 2,6-TDI (CAS: 91-08-7). 2,4-TDI is produced in the pure state, but TDI is often marketed as 80/20 and 65/35 mixtures of the 2,4 and 2,6 isomers respectively. It is produced on a large scale, accounting for 34.1% of the global isocyanate market in 2000, second only to MDI.[3] Approximately 1.4 billion kilograms were produced in 2000.[4]

Contents

 [hide

Synthesis[edit]

2,4-TDI is prepared in three steps from toluene via dinitrotoluene and 2,4-diaminotoluene (TDA). Finally, the TDA is subjected to phosgenation, i.e., treatment with phosgene to form TDI. This final step produces HCl as a byproduct and is a major source of industrial hydrochloric acid.[4]

Distillation of the crude TDI mixture produces an 80:20 mixture of 2,4-TDI and 2,6-TDI, known as TDI (80/20). Differentiation or separation of the TDI (80/20) can be used to produce pure 2,4-TDI and a 65:35 mixture of 2,4-TDI and 2,6-TDI, known as TDI (65/35).

Applications[edit]

The isocyanate functional groups in TDI react with hydroxyl groups to form carbamate (urethane) links. The two isocyanate groups in TDI react at different rates: The 4-position is approximately four times more reactive than the 2-position. 2,6-TDI is a symmetrical molecule and thus has two isocyanate groups of similar reactivity, similar to the 2-position on 2,4-TDI. However, since both isocyanate groups are attached to the same aromatic ring, reaction of one isocyanate group will cause a change in the reactivity of the second isocyanate group.[3]

It is used in the production of flexible polyurethane foams

Hazards[edit]

The LD50 for TDI is 5800 mg/kg for oral contact and LC50 of 610 mg/m3 for the vapour. Despite the indicated low toxicity, TDI is classified as "very toxic" by the European Community.[4]

In the United States, the Occupational Safety and Health Administration has set a permissible exposure limit with a ceiling at 0.02 ppm (0.14 mg/m3), while the National Institute for Occupational Safety and Health has not established a recommended exposure limit, due to the classification of toluene diisocyanate as a possible occupational carcinogen.[5]

Information is available on handling, personal protective equipment, exposure monitoring, transport, storage, sampling and analysis of TDI, dealing with accidents, and health and environmental themes.[6] All major producers of TDI are members of the International Isocyanate Institute,[citation needed] whose aim is the promotion of the safe handling of TDI in the workplace, community, and environment.

See also[edit]

References[edit]

  1. ^ Jump up to: a b c d e f "NIOSH Pocket Guide to Chemical Hazards #0621". National Institute for Occupational Safety and Health (NIOSH).
  2. Jump up ^ "Toluene-2,4-diisocyanate". Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health (NIOSH).
  3. ^ Jump up to: a b Randall, D.; Lee, S. (2003). The Polyurethanes Book. New York: Wiley. ISBN 978-0-470-85041-1.
  4. ^ Jump up to: a b c Six, C.; Richter, F. (2005), "Isocyanates, Organic", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a14_611
  5. Jump up ^ National Institute for Occupational Safety and Health (May 1994). "Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs)". Centers for Disease Control and Prevention.
  6. Jump up ^ Allport, D. C.; Gilbert, D. S.; Outterside, S. M., eds. (2003). MDI and TDI: Safety, Health and the Environment: A Source Book and Practical Guide. Wiley. ISBN 978-0-471-95812-3.

External links[edit]

<img src="//en.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;" />

Retrieved from "https://en.wikipedia.org/w/index.php?title=Toluene_diisocyanate&oldid=724005310"

   

출처: <https://en.wikipedia.org/wiki/Toluene_diisocyanate>

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

황화수소  (0) 2016.06.24
Aldehydes  (0) 2016.06.24
TDI  (0) 2016.06.24
일산화탄소  (0) 2016.06.24
이황화탄소  (0) 2016.06.24