RTO care

3. 이황화탄소

가. 성상

o 화학식 : CS2(carbon disulfide)

o 분자량 : 76.14

o 밀도 : 1.293(0℃, 1atm)

o 끓는점 : 46.25℃(760㎜Hg)

o 녹는점 : -111.53℃(760㎜Hg)

o 물에 대한 용해도 : 0.22g CS2/100㎖ H2O(22℃)

o 상온에서 무색투명하고, 휘발성이 강하면서 일반적으로 불쾌한 냄새가 나는 유독성액체로 공 기 중에서 서서히 분해되어 황색을 띰

o 비교적 불안정하여 상온에서도 빛에 의해 분해되며, 인화되기 쉽고, 일단 불이 붙으면 청색의 불꽃을 내면서 이산화황의 자극성 냄새를 발생함

(CS2 + 3O2 → CO2 + 2SO2)

o 고온에서는 수소에 의해 환원되어 황화수소, 메탄, 탄소 등을 방출함

(CS2 + 3H2 → 2CO2 + 2SO2)

   

나. 오염원

o 비스코스 레이온(viscose rayon)과 셀로판(cellophane) 제조공정 중에 사용되어 발생함

-알칼리 섬유질에 CS2를 가하면 섬유질 크산토겐산나트륨(sodium cellulose xanthate)이 생성

(cellulose-RONa + CS2 → cellulose-RO(CS)SNa)

-이것을 묽은 수산화나트륨 용액으로 처리, 콜로이드성 비스코스 용액을 만듬

-숙성된 이 용액으로부터 비스코스 레이온 실이나 셀로판을 제조

o 사염화탄소 생산의 원료로 사용되어 발생함

-이황화탄소를 철, 염화알루미늄, 삼염화안티몬, 오염화안티몬 등의 촉매 하에 염소 기체에 반 응시키면 사염화탄소가 생성됨

(CS2 + 3Cl2 → S2Cl2 + CCl4)

   

다. 독성

(1) 급성 독성

(가) 급성독성은 주로 재해로 일어남

(나) 파이프의 파열이나 탱크의 훼손 등에 의해 우발적으로, 또는 작업중 부주의로 1000ppm 이상 고농도의 이황화탄소에 접촉하거나 흡입한 경우에 급성 독성을 일으킴

(다) 중독 증상은 알콜, 클로로포름 등의 마취작용과 비슷하고, 통상 흥분상태를 거쳐 마비상태로 되며 심하면 호흡곤란을 일으켜 사망함

(2) 아급성 독성

(가) 수백 ppm의 이황화탄소 증기환경 중에서 매일 작업을 계속했을 때 발생 가능함

(나) 몇 주로부터 몇 개월 후에 두통, 신경과민, 야간에는 불면, 주간에는 졸리는 상태, 각종 자율 신경저해, 성욕감퇴, 소화불량 등의 증상이 나타남

(다) 이 상태가 계속되면 정신장해를 일으킬 수도 있으나, 이황화탄소로 오염된 환경에서 벗어나면 몇 주 안으로 회복되는 것이 보통임

(3) 만성 중독

(가) 수 십 ppm에 가까운 이황화탄소의 환경농도에서 발생 가능함

(나) 전신권태, 두통, 현기증, 건망증, 가슴 답답함, 불면, 다리가 피로한 상태 등을 일으킴

(다) 신경증(노이로제), 신경염 등의 신경 증상이 주로 발생된 예도 있음

(라) 그 외 가벼운 빈혈, 동맥경화증을 일으킨 경우도 있음

(4) 피부에 대한 독성

(가) 이황화탄소는 지용성이기 때문에 피부의 기름을 빼앗고, 피부를 건조시키며, 살갗이 터져 유해세균의 감염에 노출되기 쉬움

(나) 이황화탄소가 피부에 닿으면 따끔따끔함을 느끼며, 완전히 증발하지 않았을 때에는 동통을 일으키다가 화상을 입을 수도 있음

   

라. 오염사례

(1) 1856년, 델피치는 24건의 이황화탄소 중독 사례를 보고하였고, 동물 실험을 통하여 그 증상을 확인하여 80건 이상의 이황화탄소 신경증을 보고함

(2) 영국의 부루스와 포만은 이황화탄소 만성 중독 사건을 발견함

(3) 1899년, 로덴하이머는 독일의 고무공장에서 이황화탄소 만성 중독 사건을 발견하고, 약 50건의 급성 정신 질환 사례를 보고함

(4) 1905년, 미국에서도 많은 중독 사례가 보고되었으며, 이를 계기로 사람들은 작업 환경의 개선에 관한 필요성을 인식, 고무공장의 공정 중에서 발생되는 이황화탄소 문제는 해결됨

(5) 그러나, 그 시기에 인견사류 산업이 발달하여 빠른 속도로 확장, 이 산업에서의 이황화탄소 중독 사건은 1900년에서 1930년 사이에는 간헐적으로 보고되었고, 1930년대에는 심각하게 됨

(6) 1934년, 리넬리티와 퀘릴리는 이황화탄소 중독에 의한 정신장애 및 다발성 신경장애에 대하여 보고함

(7) 1938년, 고르디는 펜실바니아 연구를 통하여 이황화탄소에 대한 작업장 허용 한계 농도를 20ppm으로 제안하였고, 1941년에 미국표준협회에 의해 이 안이 채택됨

(8) 우리 나라에서도 모 인견사 제조 공정에서 이 물질이 배출되어 작업 환경 문제와 인근 대기오염이 문제가 됨

(9) 이 공장은 방지시설로 세정탑 8기와 80m의 높은 굴뚝을 설치했음에도 불구하고 주변 지역의 악취 문제가 해결되지 못함

(10) 주변 지역의 대기중 오염 농도를 실측한 결과, 이황화탄소는 검출 한계 이내이었으나, 황화수소는 공장부지 경계선의 한 지점에서 0.04ppm(감지한계치 : 0.025ppm)까지 검출된 적이 있음

   

마. 관련기준

(1) 우리나라 환경 및 작업장 기준

(가) 대기환경보전법(개정 '92. 8. 8, 시행 '94. 1. 1)에서는 이황화탄소를 악취물질로 규정

(나) 산업안전보건법(개정 '90. 1. 13)에서는 이황화탄소를 작업장 유해물질로 규정하고 TWA(8시간가중 평균치) 10ppm(30㎎/㎥)을 작업환경 조건으로 정하여 경피에 주는 독성을 방지

(2) 일본 산업위생학회에서는 TWA(8시간 가중 평균치) 10ppm(30㎎/㎥)을 허용농도로 규정

(3) 미국 ACGIH(미국 산업위생정부전문가회의)에서는 TWA(8시간 가중평균치) 20ppm, STEL (단시간 노출허용농도) 30ppm을 허용농도로 규정

   

참고문헌

1. 김계덕 역, 일본분석화학회편, (1993), 분석화학편람, 783.

2. 이창기, (1993), 환경과 건강, pp72∼74.

3. Bela G. Liptak, (1984), Environmental Engineers' Handbook, Volume 2, pp 176∼181.

4. Edward J. Calabrese, Elaina M. Kenyon, (1991), Air Toxics And Risk Assessment, pp 213∼217.

5. Herman F. Mark, John J. Mcketta, JR., Donald F. Othermer, Encyclopedia of Chemical Technology, Second Completely Revised Edition, Volume 17, pp 177∼189.

6. Karel Verschuren, (1983), Handbook of Environmental Data on Organic Chemicals, Second Edition, pp 340∼341.

7. Luigi Parmeggiani, (1971), Encyclopedia of Occupational Health and Safety, pp 1090∼1091.

8. Robert Thornton Morrison, Robert Neilson Boyd, (1987), Organic Chemistry, pp 1340∼1341.

   

작성자 : 대기공학과 환경연구사 석광설(공학석사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-3.htm>

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

TDI  (0) 2016.06.24
일산화탄소  (0) 2016.06.24
이황화탄소  (0) 2016.06.24
먼지  (0) 2016.06.24
이산화황  (0) 2016.06.24
SO2, sulfur dioxide  (0) 2016.06.24

Comment +0

   

   

1. 먼 지

가. 정의 및 성상

(1) 먼지

(가) 정의

먼지란 대기중에 떠다니거나 흩날려 내려오는 입자상 물질의 하나로 일명 분진이라고 한다. 보통 0.1∼500㎛의 입경범위를 가지며, 입자의 크기에 따라 무거워서 침강하기 쉬운 것을 강하분진이라 하고, 입자가 미세하고 가벼워서 좀처럼 침강하기 어려워 장기간 대기중에 떠다니는 것을 부유분진이라 한다.

(나) 성상

먼지는 주로 고체상 물질이지만, 액체상 물질로 이루어질 수도 있으며, 그 안에 납, 구리, 크롬, 아연, 카드뮴 등과 같은 중금속물질이 들어 있기도 하고, 황산염, 질산염 등과 같은 산성 유해물질이 함유되어 있기도 하다. 이러한 조성은 먼지가 어느 발생원으로부터 나왔는가에 따라 달라지므로 먼지의 성상을 한마디로 정의하는 것은 매우 어렵다.

(2) 미세먼지

(가) 우리나라는 대기중에 부유하고 있는 총부유분진(TSP)과 별도로 인체에 흡입되어 폐포에 침착될 가능성이 큰 입자영역을 가진 미세한 먼지를 관리하기 위해 직경이 10 ?m이하인 먼지(PM10)를 대기환경기준항목으로 설정하여 관리하고 있다 (1995.1)

(나) 외국에서는 인체영향 측면을 고려하여 PM10에서 직경이 2.5?m이하인 입자(PM2.5)를 새로운 관리대상 먼지로 설정하기 위한 연구를 시행 중이며, 이들 PM2.5는 2차 생성 먼지들이 중요 구성성분으로 알려져 있다. 우리나라 역시 PM2.5에 대하여 활발한 연구와 측정분석이 진행되고 있다.

나. 주요 발생원

(1) 먼지

(가) 화석연료를 사용하는 각종 연소시설(0.5∼30㎛) 및 소각시설(1∼50㎛)

(나) 유리, 도자기 및 금속의 용융, 용해, 열처리 시설(0.3∼10㎛)

(다) 화학비료, 석유정제 및 석유화학제품 제조시설 중 소성, 건조, 가열 및 탈황시설(3∼50㎛)

(라) 시멘트, 코크스, 석탄, 연탄 및 제조시설 등(3∼50㎛)

(마) 각종 토목, 건축공사장, 채석장, 비포장도로 및 나대지

(바) 자동차에서 배출되는 매연, 자동차의 운행에 따라 타이어 및 도로의 마모

(2) 미세먼지

(가) 일반적으로 대기중에 부유하고 있는 입자 중 조대입자는 주로 지면에서 비산된 토양입자나 화산재 등과 같은 자연적으로 발생한 입자들이다.

(나) 미세입자들은 주로 산업, 운송, 주거활동 등에 의한 연소나 기타 공정으로부터 직접 배출되거나, 1차 배출된 가스상 오염물질이 변환되어 생성된다. 따라서 PM2.5는 황산염, 질산염, 암모니아 등의 이온성분과 금속화합물, 탄소화합물, 그리고 수분 등으로 이루어져 있다.

(다) 서울의 몇 개 지역에서 측정한 미세입자의 성분별 농도는 표 3.1.1과 같다.

표 3.1.1 PM2.5의 성분별 농도 (단위 : ㎍/m3)

   

지 점

황산염

질산염

염소화합물

암모니아

불광동

전농동

인 천

9.04

4.17

5.38

5.02

1.74

3.51

3.09

1.82

3.23

4.24

1.18

2.04

평 균

6.19

3.42

2.71

2.49

* '96년 3개 측정소에서 PM2.5을 측정분석한 결과임

다. 독성 및 영향

(1) 오염경로

발생된 먼지는 공기중에 부유상태로 존재하면서 식물의 잎에 부착되어 잎의 기공을 막고 햇빛을 차단하여 동화작용, 호흡작용 및 증산작용 등을 저해하여 식물 생육에 악영향을 미치며, 또 호흡을 통해 인체에 침입하여 기관지 및 폐에 부착된다. 이들 입자중 일부는 기침, 재채기, 섬모운동 등에 의하여 제거되나 일부는 폐포 등에 침착·축적되어 인체에 유해한 영향을 나타낸다.

(2) 인체영향

(가) 입자상 물질들은 가스상물질에 비해 인체의 폐에 침착되기 쉽기 때문에 다른 대기오염물질보다 인체 건강에 더 큰 악영향을 초래할 가능성이 있는 것으로 알려져 있다. 특히 사람이 호흡할 때 직경이 10㎛이하인 미세입자들은 호흡기를 통하여 폐에까지 도달하여 침착될 수 있다고 한다. 미국에서는 이를 근거로 대기환경기준 항목에 PM10을 추가하였다.

(나) 먼지는 단독으로 있을 때보다 아황산가스와 함께 있을 때 인체에 대한 피해를 가중시키는 것으로 알려져 있다. 그 입자조성과 크기에 따라 영향을 미치는 범위와 정도가 다르다. 먼지중의 규소는 규폐증을 일으키기 쉬우나 철분은 비교적 영향이 작은 것으로 알려져 있다. 납이나 카드뮴같은 중금속을 함유하는 먼지는 다른 영향을 줄 수도 있다. 먼지가 아황산가스와 복합적으로 작용할 경우에 인체에 미치는 영향을 표 2.1.2에 나타내었다.

(다) 폐의 각 부위에 도달하는 정도는 입자의 크기에 좌우되는 데 작은 미세입자일수록 폐 깊숙이 유입될 수 있다. 1㎛이상의 큰 먼지는 대부분 코나 기도의 점막과 섬모에 걸려 객담으로서 배출된다. 이때 기관지를 통과할 수 있는 0.1∼1㎛크기의 먼지가 폐포내 침착율이 가장 높다. 이러한 경로로 폐포내에 먼지가 많이 침착되면 진폐증이나 규폐증이 발생될 수 있다. 우리나라에서도 탄광지역의 일부 근로자에 진폐증이 발생된 것으로 언론에 보도되어 사회문제를 야기 시킨바 있다. 또한 최근 연구결과에 의하면 미세 입자농도의 증가가 주민들의 사망률 증가와 밀접한 관계가 있다고 하며, 이밖에도 폐질환으로 인한 통원 치료의 증가, 병가로 인한 학생들의 결석률 증가, 성인들의 활동 제한, 가벼운 순환기 질환 등을 초래한다고 한다(Canada MOE, 1995).

표 3.1.2 부유분진과 아황산가스의 장기폭로시 인체의 영향

   

먼 지

(㎍/m3)

아황산가스(SO2)

  

영 향

  

(㎍/m3)

(ppm)

  

250

250

0.095

가래의 양이 늘어남

240

130

0.050

호흡기계질환 증가

180

120

0.046

호흡기계질환이 늘고, 폐기능이 약해짐

230

120

0.046

하부기도질환 증가

93

90

0.037

FVC, FEV0.75 치의 감소

110

23

0.009

FEV0.75 치의 감소

180

55

0.021

호흡기계의 모든 증상이 증가, 폐기능 저하

131

37

0.014

영향 없음

80

66

0.025

영향없음

* FVC : 강제폐활량 * FEV0.75 : 0.75초간의 폐의 배기량

(라) 특히, 기존의 폐나 심장에 질환을 갖고 있는 성인이나 어린이들의 경우 PM10에 의해 쉽게 영향을 받는 것으로 보고되고 있다. 아직 어떤 성분의 입자가 건강에 해로운 병을 초래하는지 과학적인 검증은 되지 않았지만, 바람에 의해 비산되는 자연발생원의 입자들보다는 화석연료와 같은 인위적인 배출원에서 발생한 입자들이 더 해로운 것으로 알려져 있다.

표 3.1.3 먼지가 인체 및 환경에 미치는 영향 (단위 : ㎍/m3)

   

농 도

폭로시간

영 향

비 고

10

30

80∼100

100

100

100∼135

130 이상

150∼350

150

75∼300

300

300

300 이상

300∼1,200

1,000

-

-

장기간

-

-

-

24시간

-

-

1시간

-

-

-

시정감소 120Km 이하

시정감소 40Km 이하

사망율 증가

만성기관지염 발병률 증가

시정감소 12Km 이하

만성호흡기 질환자 사망율증가

어린이 (15세미만) 기도질환의 발생빈도 및 중증도 증가

노출집단 폐기능손상, 객담량증가

병약자, 노인의 사망증가

시정감소 8Km 이하

시정감소 4Km 이하

병약자,노인의 사망수 증가

기관지염 환자증상의 급성악화

시정감소 2Km이하, 불쾌,교통사고 증가

시정감소 1.2Km 이하

   

   

   

   

직경 0.2∼1.0㎛

SOx 130㎍/m3이상

SOx 123∼300㎍/m3 이상시

   

   

SOx 630㎍/m3 이상 및 고온시

   

(3) 시정악화에 대한 영향

(가) 미세한 입자상 물질이 대기중에 부유할 때에는 빛을 흡수, 산란시키기 때문에 시정을 악화시킨다(Si Duk Lee, 1995).

(나) "수도권지역 시정장애현상 규명을 위한 조사연구('94∼'96)" 결과 빛의 흡수, 산란 기여율이 입자상 물질 95%, 가스상 물질 5%로 나타났으며, 시정이 나쁠 때 미세입자(2.5 ㎛이하의 미세입자 ; PM2.5)의 농도가 증가함을 보였다(최덕일, 1994).

마. 규제 법규 및 각종 기준

(1) 환경기준

환경정책기본법 시행령 제3조에 의거하여 미세먼지(PM10)가 환경기준항목으로 설정되어 있다. 한국 및 각국의 먼지에 대한 환경기준을 비교하여 보면 표 3.1.4와 같다. 외국의 경우 대기환경기준 이외에도 대기오염 정도에 따라 비상대책을 강구하기 위하여 대기오염에 대한 경보기준을 정하여 만약의 사태에 대비하고 있다.

표 3.1.4 주요 국가별 미세먼지(PM10)의 환경기준 (단위 : ㎍/m3)

   

국가별

구분

한국*

('96)

일본

('90)

미국

('90)

네델란드 ('86)

독일

('86)

대만

('75)

WHO

('87)

연 평균

80

-

50

-

24

240

-

1달 평균

-

-

-

-

-

210

-

24시간 평균

150

100

150

150

-

-

-

1시간 평균

-

200

-

-

-

-

-

30분 평균

-

200

-

-

300

-

-

* 1시간 및 24시간 평균치는 연간 3회 이상 기준을 초과하여서는 안됨

(2) 배출허용기준

환경기준을 달성·유지시키기 위하여 연소시설, 소각로 등과 같은 각 배출원에 대하여 배출허용기준을 두게 되는데, 우리나라는 대기환경보전법 제8조제1항 시행규칙제12조 별표8에 시설을 구분하여 단계별로 배출허용기준을 설정하고 있으며. 먼지의 경우 배출부과금 대상오염물질로 정해져 있어 배출가스중 먼지의 농도가 허용기준을 초과할 때에는 1차적으로 개선명령을 받게되고, 이 개선기간 중 배출되는 먼지에 대해서는 엄격한 배출부과금을 지불하게 되어있다. 일부 배출시설에 대한 주요 국가의 배출허용기준은 표 3.1.5와 같다.

바. 오염현황

(1) 우리나라

'98년의 경우 대구와 성남에서 미세먼지(PM10)가 환경기준(80㎍/㎥/년)을 초과하였으며, 서울, 인천, 부산 등 대도시에서는 몇 개의 지점에서만 환경기준에 근접하고 있다. '98년 측정한 결과를 보면 연평균농도에서 PM10과 TSP의 농도차이가 크지 않은 것으로 나타났다.

(2) 외국

'98년 미국 LA의 년평균 농도는 40.5㎍/㎥, 24시간평균최대치는 78㎍/㎥이었고, 뉴욕시의 경우는 연평균 56.0㎍/㎥, 24시간평균최대치는 114㎍/㎥으로 보고되었다. '98년 영국 런던의 각 측정소별 24시간 평균치는 18∼24㎍/㎥의 수준을 보였다.

   

표 3.1.5 주요 국가별 먼지의 배출허용기준

   

   

한 국

미 국

독 일

호 주

적용기간 및 허용기준

  

  

  

'96∼'98 '99이후

  

  

  

발전시설·일반보일러

(액체연료)

- 배출가스량 > 20만m3/h

60 ㎎/Sm3 40 ㎎/Sm3

(4) (4)

- 배출가스량 3만∼20만m3/h

100 ㎎/Sm3 50 ㎎/Sm3

(4) (4)

- 배출가스량 6천∼3만m3/h

150 ㎎/Sm3 100 ㎎/Sm3

(4) (4)

- 배출가스량 < 6천m3/h

200 ㎎/Sm3 150 ㎎/Sm3

(4) (4)

73MW 발전시설

- 잔사유 : 43 ㎎/MJ

- 고체연료(갈탄제외)

: 43 ㎎/MJ

- 혼합연료 : 13 ㎎/MJ

액체연료 사용시설

- >100MW (3% O2)

; 50㎎/m3

- <100MW (3% O2)

기존 ; 50∼100 ㎎/m3

신규 ; 50 ㎎/m3

열병합발전시설

: 80 ㎎/Nm3

열공급시설

: 250 ㎎/Nm3

혼합시설

(12% CO2)

: 250 ㎎/Sm3

* ( )안은 표준 산소 농도임

사. 방지대책

(1) 비산먼지

공사장 출입차량의 세륜, 석탄 등과 같은 야적장에 주기적 물분사 및 비산방지망 설치, 도로의 주기적 청소, 비포장도로의 포장 등이 있다.

(2) 배출먼지

전기집진기, 여과집진기, 세정기, 중력식 집진기 등과 같은 방지시설을 배출되는 입자의 특성에 따라 설치, 운영한다.

(3) 미세먼지

PM10은 바람에 의해 비산된 토양 먼지 등 자연적인 입자들이 많이 포함되어 있고, 이러한 입자들은 PM2.5보다 건강학적인 측면에서 덜 중요하므로 앞으로 입자상 오염물질의 효율적 관리를 위해서는 PM2.5를 환경기준에 포함시켜 측정하고 감시하는 것이 요구된다.

참고문헌

1. British Columbia Ministry of Environment, (1995), Health effects of inhalable particles; Private implications for British Columbia - overview and conclusions

2. Dr. Luigi Parmeggiani, (1983).

3. Si Duk Lee, (1995), Particulate matter regulatory trend in US, Korea-America joint seminar on the source of visibility reduction and counter-measures in the metropolitan area. 21∼50

4. 최덕일 등, (1994), 수도권 지역의 시정장애 현상규명을 위한 조사연구 (Ⅰ) - 시정감소 원인물질 및 메카니즘 규명 - 200pp

   

작성자 : 대기공학과 환경연구사 김대곤(공학석사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-1.htm>

   

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

일산화탄소  (0) 2016.06.24
이황화탄소  (0) 2016.06.24
먼지  (0) 2016.06.24
이산화황  (0) 2016.06.24
SO2, sulfur dioxide  (0) 2016.06.24
CS2, Carbon disulfide  (0) 2016.06.24

Comment +0

2. 이산화황

   

가. 성상

(1) 특성

이산화황(SO2)은 물에 대단히 잘 녹는 무색의 자극성이 있는 불연성 가스로써 황산화물(SOx) 중 에서 가장 많은 양을 점하고 있으며, 대기중에서 산화된 후 수분과 결합하여 황산(H2SO4)이 된다.

(2) 성상

이산화황의 물리화학적 특성은 다음과 같다.

- 분자량 64.07, 비중 2.2630, 녹는점 -72.7℃, 끓는점 -10.2℃, 물에 대한 용해도 : 10.5g/100g

   

나. 생성 및 소멸

(1) 생성

(가) 자연적 : 화산가스, 광천 등

(나) 인위적

- 황성분이 함유된 물질의 연소, 금속의 용융·제련, 황산제조, 석유정제 및 화학비료제조 과 정 등에서 발생한다.

- 유황함유 연료의 연소시 배출가스중 95% 정도는 SO2, 나머지는 SO3 와 황산염의 형태로 존재한다.

(2) 소멸

(가) 소멸기전 : 배출구에서 고농도 상태로 대기중으로 배출되면서 혼합·희석되며, 대기중 에서 물리적 현상에 따라 제거되거나 화학적 반응에 의하여 다른 물질로 변하는 등 자연적으로 소멸된다.

(나) 소멸기간 : 대기에서 반으로 줄어드는 데 걸리는 시간은 약 4시간이고 전체가 소멸되는 데에는 약 25일이 걸린다.

(다) 배경농도 : 전지구적 대기중의 배경농도는 1ppb 정도로 알려져 있다.

   

다. 독성 영향

(1) 급·만성 독성

(가) 이산화황으로 오염된 대기에 노출되면 눈이나 코, 상기도의 점막 등을 통해서 감각적인 영향을 받게 되고 잇따라 생리적인 반응이 일어나며, 계속해서 노출되면 그 증상이 악화되어 급성피해가 나타나고, 이 피해가 여러 번 반복해서 일어날 때는 만성피해로 바뀐다.

(나) 급성피해로는 불쾌한 자극성 냄새, 시정감소, 생리적 장애, 압박감, 기도저항 증가 현상이 나타나고, 만성피해로는 폐렴, 기관지염, 천식, 폐기종, 폐쇄성 질환 등이 나타난다.

(다) 세계적으로 유명한 대기오염물질에 의한 피해사례를 보면 표 3.2.1과 같으며, 표 3.2.1의 피해사례중 자동차 배출가스 중의 NOx를 주체로 한 Los-Angeles의 경우를 제외하고는 이산화황이 주요 원인물질이었다.

※ 런던 스모그 사건

(라) 스모그란 smoke와 fog의 합성어로서 대기오염물질이 기온, 풍향, 풍속 등의 기상조건과 지리적 조건에 의하여 지역적으로 그 농도가 높아져 안개와 반응하여 일어나는 대기오염현상임

표 3.2.1 세계적으로 유명한 대기오염 사건

사 례

Meuse Valley

(벨기에)

1930.12월

Donora

(미국)

1948.10월

London

(영국)

1952.12월

Los-Angeles

(미국)

1954년 이후

요꼬하마

(일본)

1946년 겨울

환 경

분 지

무풍상태

기온역전

연무발생

공장지역

분 지

무풍상태

기온역전

연무발생

공장지역

하천평지

무풍상태

기온역전

연무발생

대도시

해안분지

--

기온역전

백색연무발생

대도시

--

무풍상태

--

농연무발생

공장지역

피 해

평상시 사망자

수의 10배, 급

성 호흡기자극 성증 환자발생

18명 사망,인구

14,000명중 43%

가 경.중증의

자극증상 발생

3주간 4,000명

과잉사망,그후

2개월에 8,000

명 과잉사망

눈, 코, 기도, 폐

등 점막의 지속적

반복성 자극

천식발생

병 인

이산화황, 황산

불소화합물,미세

입자 등

이산화황 및 황산미세입자등

석탄연소 이산화황, 분진 등

자동차배기 등 석유계 연소의 NOx, CO, SOx, HC

불명,대기오염

추정

   

(마) 런던스모그는 공장, 빌딩, 가정 등에서 배출된 이산화황 가스와 먼지가 안개와 반응하여 생성된 것으로 스모그가 심했던 해는 1880, 1892, 1948, 1952년 등이었으며, 특히 1952년 12월 5일 런던 상공을 덮은 스모그는 가히 위협적이었으며,

(바) 그 때, 고기압성의 정체된 공기덩어리에 의하여 생성된 지속적인 기온역전층이 런던의 지표 바로 위에 걸려 있었고 바람은 거의 불지 않았으며, 안개로 인하여 습도는 약 90%로

(사) 이 상태가 5일간 계속되어 이산화황 농도는 최고 0.7ppm(우리나라 24시간 평균치 : 0.14 ppm이하)까지 올라갔다.

(아) 그 결과, 런던지역에서는 평소보다 약 4천명이나 더 많은 사망자가 발생했고, 입원환자는 48%, 외래환자는 108%나 증가했으며

(자) 입원환자 중 호흡기질환 환자의 수가 3배로 증가하는 한편, 급성 호흡기질환으로 사망한 수는 약 10배로 늘어났고,

(차) 피해 대상자들은 주로 노인, 어린이, 환자 등 비교적 허약한 체질의 사람들이었으나 전연령층에 심폐성질환이 급증하였고, 특히 45세 이상은 중증이었다.

(2) 인체 노출량 관계

(가) 대기중의 이산화황은 수용성이 크기 때문에 호흡작용에 의해 그 대부분이 상기도에 흡수 되어 기관지, 눈, 코 등의 점막을 통해 자극을 주며, 농도가 높을수록 호흡을 빨리하면 할수록 점막에 많이 흡수되고 기관지까지 도달하는 양도 많아져 그 피해도 커지며,

(나) 점막에 흡착된 이산화황은 점액과 반응하여 황산을 형성함으로써 결국 염증을 일으켜 세 균과 바이러스에 의한 2차 감염을 쉽게 하고, 이러한 기전으로 안질환을 일으킨다는 보고가 많으며, 특히 안개가 많고 습도가 높을 때 호흡기질병의 이환율이 높고 사망율도 높다는 보고도 있다.

   

라. 규제 법규 및 각종 기준

(1) 환경기준

(가) 의의 : 많은 나라들이 인간이 생활하는 환경의 질을 인간 생존에 적정한 수준으로 유지 하기 위하여 행정 목표기준인 환경기준을 설정하여 환경의 질을 평가하고 환경정책을 계획하는 지표로 삼고 있다.

(나) 근거

- 환경정책기본법 시행령 제 3조에 동 물질을 환경기준 항목으로 정하고 있으며,

- '79년도에 연평균 농도 0.05ppm으로 설정·관리해 오다 '93년 말에 0.03ppm으로 강화하였으 며 WHO 수준으로 기준을 강화하기 위한 작업을 추진중에 있다..

(다) 기준 : 표 3.2.2는 주요 국가의 이산화황 환경기준을 보인 것으로 우리나라는 다른 나라와 대동소이하다.

표 3.2.2 주요 국가별 이산화황의 환경기준

   

국 가

기 준(평균치)

  

  

  

  

  

연 간

24시간

3시간

1시간

30분

WHO(`87)

0.015∼0.023

0.04∼0.06

-

0.13ppm이하

-

한 국(`93)1)

0.03ppm이하

0.14ppm이하

-

0.25ppm이하

-

미 국(`90)

0.03ppm이하

0.14ppm이하

0.50ppm이하

-

-

일 본(`90)

-

0.04ppm이하

-

0.10ppm이하

-

대 만(`75)

0.05ppm이하

0.10ppm이하

-

-

-

서 독(`86)

0.05ppm이하

-

-

-

0.14ppm이하

멕시코(`84)

-

0.12ppm이하

-

-

-

   

(2) 배출허용기준

(가) 우리나라

1) 근거 : 환경기준을 달성·유지하기 위하여 배출허용기준을 두게 되며, 우리나라는 대기환경보전법 제 9조와 관련하여 시설 및 단계별로 기준을 정하고 있으며,

2) 기준 : 시설별로 '95년까지는 300∼1,950ppm을, '96년∼'98년 사이에는 150∼1,950ppm을, '99년 이후는 150∼650ppm을 준수하도록 강화·예시하고 있으며 2003년 이후 적용할 배출기준 조정을 '99년중 추진할 예정으로 있다.

- 일부 배출시설에 대한 배출허용기준은 아래 표 3.2.3과 같다.

표 3.2.3 일반 보일러의 이산화황 배출허용기준

   

구 분

기 준(ppm)

  

비 고

  

'96∼'98

'99∼

  

저황유 사용지역

540(4)

540(4)

( )안은 표준 산소농도임

기타 지역

1,950(4)

540(4)

  

- 작업환경에서의 허용한도는 시간가중 평균치(TWA)로 2ppm 이다.

3) 연료규제 : '81년도에 연료유의 황함량기준을 강화(B-C유 : 4%-S -> 1.6%-S, 경유 : 1%-S -> 0.4%-S)하여 서울을 시작으로 수도권 및 주요 도시지역으로 공급을 확대하고, '93년도에는 이 기준을 더욱 강화(B-C유 : 1.6%-S -> 1%-S, 경유 : 0.4%-S -> 0.2%-S)하였다.

4) 청정연료 사용 의무화 : 도시가스의 보급확대를 위해 '88년에 서울시내 2톤 이상 보일러(업무, 영업, 공공용)에 그 사용을 의무화한 이후 점진적으로 확대하고 있다.

(나) 선진국 : 미국, 일본 등 선진국의 화력발전소 SO2 규제치는 표 3.2.4와 같다.

표 3.2.4 미국·EC·일본의 배출규제치

   

구 분

미 국

  

  

EC

일 본3)

  

  

신 설

기 존1)

기 존2)

기존및 신설

신설

기존

1% S의 석탄(mg/Nm3)

166

2,380

1,140

400

170

430

2.5% S의 석탄(mg/Nm3)

208

2,380

1,140

400

170

430

1 : 1995. 1. 1부터 적용

2 : 2000. 1. 1부터 적용

3 : 일본은 동경에서 유효 배출구높이를 300m, K를 1.17(신설) 및 3.0을 적용한 경우임

1) 일본

가) 일본은 '68년도에 K치규제를 시행한 이후 K값을 8차례에 거쳐 강화하였다.

나) 지역에 따라 정해진 K값(3.0∼17.5 사이의 16등급, 작을수록 엄격함)에 유효 배출구높이를 곱하여 이산화황의 배출량(K·H2·10-3 N㎥/hr)을 규제하는 총량규제 및 연료 규제를 실시하고 있다.

다) 이러한 규제에 따라 '92년도에 내수용 B-C유의 평균 황함유율이 1.05%에 이르렀고, 배연탈황시설도 총 2,014기가 설치.운영되고 있다.

2) 미국

가) 화력발전에 의한 이산화황 배출 기여율이 80%에 상당한 것으로 보고되고 있다.

나) '90년도에 개정된 대기청정법에서 이들 중오염 석탄화력발전소의 이산화황 배출기준을 기존 및 신규시설로 구분하여 표 3.2.4와 같이 규제하고 있다.

다) 초과방지시설에 의한 여분의 배출량 저감치는 배출거래권을 인정하여 현물시장에서 거래할 수 있도록 하고 있으며,

라) 또한 5년 단위의 삭감목표를 정해 '95년 및 2000년까지 각각 500만톤씩 감소시켜 2000년에 '90년(약 2000만톤) 대비 반으로 줄일 계획이다.

- EC는 '93년에 '87년 대비 25%, 2003년에 60% 삭감 계획을 추진중에 있다.

마. 오염 현황

(1) 오염물질 배출량

(가) '80년대 후반에서 '90년대 초까지의 우리나라 1차에너지 소비량을 보면 동 기간중 석탄의 증가 추세는 찾아볼 수 없으나 석유류는 대폭 증가한 반면 LNG 및 수력·원자력 발전에너지는 다소 증가하였다.

(나) 이에 따른 오염물질 배출량도 증가하였으나 90년대 감소추세로 나타나고 있다. '97년 연료사용량을 기준으로 추정한 오염물질 총배출량은 4,365천톤으로 그중 황산화물이 1,356천톤으로 전체의 31.3%를 차지하고 있다.

그림 3.2.1 '97년 대기오염물질 배출량

   

(2) 부문별 이산화황 배출량

(가) '97년 이산화황 총배출량 1,369천톤으로 부문별 발생량을 보면 산업부문에서 46%, 발전부문 26%, 수송 21%, 난방 7%의 비율을 보이고 있다.

(나) 이산화황은 '90년을 기준으로 감소하는 추세를 보이고 있는데 이는 정부의 대기환경시책에 힘입어 황함량이 적은 유류나 LNG 등의 사용량 증가에 기인한 것이며, 특히 난방부분에서 괄목 할 만큼 줄어들었다.

그림 3.2.2. 부문별 이산화황 배출량

   

(3) 국내 1-3종 배출시설의 이산화황 배출량

표 3.2.5. 국내 1-3종 배출시설의 SO2 배출량 순위 (ton/yr)

   

배출시설의 SO2 배출순위

SO2

백분율(%)

국내 총배출량

1,011,534

100.00

1. 보일러

460,435

45.52

2. 발전시설

250,904

24.80

3. 기타 금속제품제조, 가공시설

65,078

6.43

4. 금속의 용융, 제련 또는 열처리시설

35,734

3.53

5. 비누, 세정제 제조시설

31,274

3.09

6. 석유정제시설

24,950

2.47

7. 아스콘제조시설

18,524

1.83

8. 기타 화학제품 제조관련시설

18,173

1.80

9. 석유화학제품 제조시설

14,482

1.43

10. 유리 및 유리제품 제조 관련시설

12,648

1.25

   

(4) 도시별 이산화황 연평균 농도

최근 10년간 우리나라의 아황산가스 농도는 저황유 및 LNG 등 청정연료의 지속적인 공급확대로 대부분의 도시에서 개선되어 장·단 기준 모두를 만족하고 있으며, 부산, 울산, 대구를 중심으로 고농도 분포를 보이고 있다.

그림 3.2.3. 7대도시의 10년간 아황산가스농도 변화추이

   

바. 문제점

(1) 자체적으로 독성이 있을 뿐만 아니라 산성비를 유발하는 대표적 오염물질로, 화석에너지의 청정화에도 불구하고 꾸준한 사용량의 증가와 국부적으로 화력발전소와 같은 대단위 배출원이 위치하거나 위치할 지역의 이산화황 배출량 증가는 피할 수 없을 것으로 보인다.

(2) 난방용 연소시설(가정, 상업)로부터 배출되는 이산화황은 청정연료의 사용으로 저감이 기대되지만 동절기 중에 오염물질이 집중 배출되는 계절적 특성이 있다.

(3) 발전용 연소시설과 같은 대단위 배출시설이 입지한 울산, 인천, 서산 등의 주변지역에서는 전국적인 이산화황 배출량의 저감에도 불구하고 오염피해가 우려되며, 이들을 일반 연소시설과 동일한 규제방식으로는 대책마련이 곤란하다.

(4) 산업용 연소시설은 B-C유를 주로 사용하고 있으며, 그 저감대책이 저황유 공급으로 되어 있어 황함유율 기준강화 및 공급물량 확보 등에 한계가 있다.

사. 대책

이산화황 저감을 위해서는 황함량이 적은 연료를 사용하는 것이 가장 바람직한 방법이겠지만, 현실적으로 연료에만 의존할 수 없으므로 배출가스중의 이산화황을 제거하는 배연탈황 장치의 설치를 활성화해야 한다.

(1) 대형 배출원에 대한 "배출허용 총량 규제제도" 도입

(2) 연료 황함유 기준의 단계적 강화 및 연료의 황함량에 따른 가격 차 확대

(3) 신규 석탄화력 발전시설은 배출허용 총량의 범위내에서 석탄가스화기술(IGCC), 유동층 연 소보일러 설치 등 저공해 발전기술의 도입

(4) 우심지역부터 대형 배출시설에 대한 배연탈황시설 설치의 의무화 등

- 선진국에서 보급되고 있는 배연탈황기술은 배출가스 중의 이산화황을 가성소다 용액에 흡수 시키는 방법, 석회석이나 백운석에 흡착시키는 방법, 황산으로 회수하는 방법, 탄소황으로 회 수하는 방법 등임

참고문헌

1. 국립환경연구원, (1998), 대기오염물질 배출량.

2. 김희강외, (1993), 대기오염개론, 동화기술.

3. 에너지경제연구원, (1994), 에너지통계연보.

4. 전국환경관리인연합회, (1994), 환경관계법규, 홍문관.

5. 환경부, (1995), 대기오염측정종합자료집.

6. John Quarles etc., (1990), The New Clean Air Act, Morgan, Lewis & Bockius.

7. OECD, (1995), OECD Environmental Data.

8. Leighton S. Cochran, (1992), Selected International Receptor-Based Air Quality Standards, Air & Waste Management Association Vol 42, No. 12.

9. S. Stallard Black & Veatch, etc., (1993), Comparison of Worldwide Emission Control Strategies and Their Effects on Plant Availability and Costs, 1993 SO2 Control Symposium.

10. 環境廳, (平成 6), 環境白書.

11. 環境保全對策硏究會, (平成 5), 大氣汚染對策基礎知識.

   

작성자 : 대기공학과 연구관 홍지형(공학박사)

   

   

원본 위치 <http://home.sunchon.ac.kr/~bioenvlab/data2/ham3/3-2.htm>

   

'지구별 이야기 > 대기와 대기오염' 카테고리의 다른 글

일산화탄소  (0) 2016.06.24
이황화탄소  (0) 2016.06.24
먼지  (0) 2016.06.24
이산화황  (0) 2016.06.24
SO2, sulfur dioxide  (0) 2016.06.24
CS2, Carbon disulfide  (0) 2016.06.24

Comment +0